Spaces:
Running
Running
File size: 11,215 Bytes
fe5c39d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
#!/usr/bin/env python
from __future__ import annotations
import asyncio
from typing import Any, Callable, Optional, Union
from pydantic import TypeAdapter, model_validator
from metagpt.actions import Action
from metagpt.config2 import config
from metagpt.logs import logger
from metagpt.tools.search_engine import SearchEngine
from metagpt.tools.web_browser_engine import WebBrowserEngine
from metagpt.utils.common import OutputParser
from metagpt.utils.text import generate_prompt_chunk, reduce_message_length
LANG_PROMPT = "Please respond in {language}."
RESEARCH_BASE_SYSTEM = """You are an AI critical thinker research assistant. Your sole purpose is to write well \
written, critically acclaimed, objective and structured reports on the given text."""
RESEARCH_TOPIC_SYSTEM = "You are an AI researcher assistant, and your research topic is:\n#TOPIC#\n{topic}"
SEARCH_TOPIC_PROMPT = """Please provide up to 2 necessary keywords related to your research topic for Google search. \
Your response must be in JSON format, for example: ["keyword1", "keyword2"]."""
SUMMARIZE_SEARCH_PROMPT = """### Requirements
1. The keywords related to your research topic and the search results are shown in the "Search Result Information" section.
2. Provide up to {decomposition_nums} queries related to your research topic base on the search results.
3. Please respond in the following JSON format: ["query1", "query2", "query3", ...].
### Search Result Information
{search_results}
"""
COLLECT_AND_RANKURLS_PROMPT = """### Topic
{topic}
### Query
{query}
### The online search results
{results}
### Requirements
Please remove irrelevant search results that are not related to the query or topic. Then, sort the remaining search results \
based on the link credibility. If two results have equal credibility, prioritize them based on the relevance. Provide the
ranked results' indices in JSON format, like [0, 1, 3, 4, ...], without including other words.
"""
WEB_BROWSE_AND_SUMMARIZE_PROMPT = """### Requirements
1. Utilize the text in the "Reference Information" section to respond to the question "{query}".
2. If the question cannot be directly answered using the text, but the text is related to the research topic, please provide \
a comprehensive summary of the text.
3. If the text is entirely unrelated to the research topic, please reply with a simple text "Not relevant."
4. Include all relevant factual information, numbers, statistics, etc., if available.
### Reference Information
{content}
"""
CONDUCT_RESEARCH_PROMPT = """### Reference Information
{content}
### Requirements
Please provide a detailed research report in response to the following topic: "{topic}", using the information provided \
above. The report must meet the following requirements:
- Focus on directly addressing the chosen topic.
- Ensure a well-structured and in-depth presentation, incorporating relevant facts and figures where available.
- Present data and findings in an intuitive manner, utilizing feature comparative tables, if applicable.
- The report should have a minimum word count of 2,000 and be formatted with Markdown syntax following APA style guidelines.
- Include all source URLs in APA format at the end of the report.
"""
class CollectLinks(Action):
"""Action class to collect links from a search engine."""
name: str = "CollectLinks"
i_context: Optional[str] = None
desc: str = "Collect links from a search engine."
search_func: Optional[Any] = None
search_engine: Optional[SearchEngine] = None
rank_func: Optional[Callable[[list[str]], None]] = None
@model_validator(mode="after")
def validate_engine_and_run_func(self):
if self.search_engine is None:
self.search_engine = SearchEngine.from_search_config(self.config.search, proxy=self.config.proxy)
return self
async def run(
self,
topic: str,
decomposition_nums: int = 4,
url_per_query: int = 4,
system_text: str | None = None,
) -> dict[str, list[str]]:
"""Run the action to collect links.
Args:
topic: The research topic.
decomposition_nums: The number of search questions to generate.
url_per_query: The number of URLs to collect per search question.
system_text: The system text.
Returns:
A dictionary containing the search questions as keys and the collected URLs as values.
"""
system_text = system_text if system_text else RESEARCH_TOPIC_SYSTEM.format(topic=topic)
keywords = await self._aask(SEARCH_TOPIC_PROMPT, [system_text])
try:
keywords = OutputParser.extract_struct(keywords, list)
keywords = TypeAdapter(list[str]).validate_python(keywords)
except Exception as e:
logger.exception(f"fail to get keywords related to the research topic '{topic}' for {e}")
keywords = [topic]
results = await asyncio.gather(*(self.search_engine.run(i, as_string=False) for i in keywords))
def gen_msg():
while True:
search_results = "\n".join(
f"#### Keyword: {i}\n Search Result: {j}\n" for (i, j) in zip(keywords, results)
)
prompt = SUMMARIZE_SEARCH_PROMPT.format(
decomposition_nums=decomposition_nums, search_results=search_results
)
yield prompt
remove = max(results, key=len)
remove.pop()
if len(remove) == 0:
break
model_name = config.llm.model
prompt = reduce_message_length(gen_msg(), model_name, system_text, config.llm.max_token)
logger.debug(prompt)
queries = await self._aask(prompt, [system_text])
try:
queries = OutputParser.extract_struct(queries, list)
queries = TypeAdapter(list[str]).validate_python(queries)
except Exception as e:
logger.exception(f"fail to break down the research question due to {e}")
queries = keywords
ret = {}
for query in queries:
ret[query] = await self._search_and_rank_urls(topic, query, url_per_query)
return ret
async def _search_and_rank_urls(self, topic: str, query: str, num_results: int = 4) -> list[str]:
"""Search and rank URLs based on a query.
Args:
topic: The research topic.
query: The search query.
num_results: The number of URLs to collect.
Returns:
A list of ranked URLs.
"""
max_results = max(num_results * 2, 6)
results = await self.search_engine.run(query, max_results=max_results, as_string=False)
if len(results) == 0:
return []
_results = "\n".join(f"{i}: {j}" for i, j in zip(range(max_results), results))
prompt = COLLECT_AND_RANKURLS_PROMPT.format(topic=topic, query=query, results=_results)
logger.debug(prompt)
indices = await self._aask(prompt)
try:
indices = OutputParser.extract_struct(indices, list)
assert all(isinstance(i, int) for i in indices)
except Exception as e:
logger.exception(f"fail to rank results for {e}")
indices = list(range(max_results))
results = [results[i] for i in indices]
if self.rank_func:
results = self.rank_func(results)
return [i["link"] for i in results[:num_results]]
class WebBrowseAndSummarize(Action):
"""Action class to explore the web and provide summaries of articles and webpages."""
name: str = "WebBrowseAndSummarize"
i_context: Optional[str] = None
desc: str = "Explore the web and provide summaries of articles and webpages."
browse_func: Union[Callable[[list[str]], None], None] = None
web_browser_engine: Optional[WebBrowserEngine] = None
@model_validator(mode="after")
def validate_engine_and_run_func(self):
if self.web_browser_engine is None:
self.web_browser_engine = WebBrowserEngine.from_browser_config(
self.config.browser,
browse_func=self.browse_func,
proxy=self.config.proxy,
)
return self
async def run(
self,
url: str,
*urls: str,
query: str,
system_text: str = RESEARCH_BASE_SYSTEM,
) -> dict[str, str]:
"""Run the action to browse the web and provide summaries.
Args:
url: The main URL to browse.
urls: Additional URLs to browse.
query: The research question.
system_text: The system text.
Returns:
A dictionary containing the URLs as keys and their summaries as values.
"""
contents = await self.web_browser_engine.run(url, *urls)
if not urls:
contents = [contents]
summaries = {}
prompt_template = WEB_BROWSE_AND_SUMMARIZE_PROMPT.format(query=query, content="{}")
for u, content in zip([url, *urls], contents):
content = content.inner_text
chunk_summaries = []
for prompt in generate_prompt_chunk(content, prompt_template, self.llm.model, system_text, 4096):
logger.debug(prompt)
summary = await self._aask(prompt, [system_text])
if summary == "Not relevant.":
continue
chunk_summaries.append(summary)
if not chunk_summaries:
summaries[u] = None
continue
if len(chunk_summaries) == 1:
summaries[u] = chunk_summaries[0]
continue
content = "\n".join(chunk_summaries)
prompt = WEB_BROWSE_AND_SUMMARIZE_PROMPT.format(query=query, content=content)
summary = await self._aask(prompt, [system_text])
summaries[u] = summary
return summaries
class ConductResearch(Action):
"""Action class to conduct research and generate a research report."""
def __init__(self, **kwargs):
super().__init__(**kwargs)
async def run(
self,
topic: str,
content: str,
system_text: str = RESEARCH_BASE_SYSTEM,
) -> str:
"""Run the action to conduct research and generate a research report.
Args:
topic: The research topic.
content: The content for research.
system_text: The system text.
Returns:
The generated research report.
"""
prompt = CONDUCT_RESEARCH_PROMPT.format(topic=topic, content=content)
logger.debug(prompt)
self.llm.auto_max_tokens = True
return await self._aask(prompt, [system_text])
def get_research_system_text(topic: str, language: str):
"""Get the system text for conducting research.
Args:
topic: The research topic.
language: The language for the system text.
Returns:
The system text for conducting research.
"""
return " ".join((RESEARCH_TOPIC_SYSTEM.format(topic=topic), LANG_PROMPT.format(language=language)))
|