SPO / metagpt /actions /action.py
XiangJinYu's picture
add metagpt
fe5c39d verified
raw
history blame
3.87 kB
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Time : 2023/5/11 14:43
@Author : alexanderwu
@File : action.py
"""
from __future__ import annotations
from typing import Any, Optional, Union
from pydantic import BaseModel, ConfigDict, Field, model_validator
from metagpt.actions.action_node import ActionNode
from metagpt.configs.models_config import ModelsConfig
from metagpt.context_mixin import ContextMixin
from metagpt.provider.llm_provider_registry import create_llm_instance
from metagpt.schema import (
CodePlanAndChangeContext,
CodeSummarizeContext,
CodingContext,
RunCodeContext,
SerializationMixin,
TestingContext,
)
from metagpt.utils.project_repo import ProjectRepo
class Action(SerializationMixin, ContextMixin, BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
name: str = ""
i_context: Union[
dict, CodingContext, CodeSummarizeContext, TestingContext, RunCodeContext, CodePlanAndChangeContext, str, None
] = ""
prefix: str = "" # aask*时会加上prefix,作为system_message
desc: str = "" # for skill manager
node: ActionNode = Field(default=None, exclude=True)
# The model name or API type of LLM of the `models` in the `config2.yaml`;
# Using `None` to use the `llm` configuration in the `config2.yaml`.
llm_name_or_type: Optional[str] = None
@model_validator(mode="after")
@classmethod
def _update_private_llm(cls, data: Any) -> Any:
config = ModelsConfig.default().get(data.llm_name_or_type)
if config:
llm = create_llm_instance(config)
llm.cost_manager = data.llm.cost_manager
data.llm = llm
return data
@property
def repo(self) -> ProjectRepo:
if not self.context.repo:
self.context.repo = ProjectRepo(self.context.git_repo)
return self.context.repo
@property
def prompt_schema(self):
return self.config.prompt_schema
@property
def project_name(self):
return self.config.project_name
@project_name.setter
def project_name(self, value):
self.config.project_name = value
@property
def project_path(self):
return self.config.project_path
@model_validator(mode="before")
@classmethod
def set_name_if_empty(cls, values):
if "name" not in values or not values["name"]:
values["name"] = cls.__name__
return values
@model_validator(mode="before")
@classmethod
def _init_with_instruction(cls, values):
if "instruction" in values:
name = values["name"]
i = values.pop("instruction")
values["node"] = ActionNode(key=name, expected_type=str, instruction=i, example="", schema="raw")
return values
def set_prefix(self, prefix):
"""Set prefix for later usage"""
self.prefix = prefix
self.llm.system_prompt = prefix
if self.node:
self.node.llm = self.llm
return self
def __str__(self):
return self.__class__.__name__
def __repr__(self):
return self.__str__()
async def _aask(self, prompt: str, system_msgs: Optional[list[str]] = None) -> str:
"""Append default prefix"""
return await self.llm.aask(prompt, system_msgs)
async def _run_action_node(self, *args, **kwargs):
"""Run action node"""
msgs = args[0]
context = "## History Messages\n"
context += "\n".join([f"{idx}: {i}" for idx, i in enumerate(reversed(msgs))])
return await self.node.fill(context=context, llm=self.llm)
async def run(self, *args, **kwargs):
"""Run action"""
if self.node:
return await self._run_action_node(*args, **kwargs)
raise NotImplementedError("The run method should be implemented in a subclass.")