#!/usr/bin/env python # -*- coding: utf-8 -*- """ @Time : 2023/5/11 14:43 @Author : alexanderwu @File : action.py """ from __future__ import annotations from typing import Any, Optional, Union from pydantic import BaseModel, ConfigDict, Field, model_validator from metagpt.actions.action_node import ActionNode from metagpt.configs.models_config import ModelsConfig from metagpt.context_mixin import ContextMixin from metagpt.provider.llm_provider_registry import create_llm_instance from metagpt.schema import ( CodePlanAndChangeContext, CodeSummarizeContext, CodingContext, RunCodeContext, SerializationMixin, TestingContext, ) from metagpt.utils.project_repo import ProjectRepo class Action(SerializationMixin, ContextMixin, BaseModel): model_config = ConfigDict(arbitrary_types_allowed=True) name: str = "" i_context: Union[ dict, CodingContext, CodeSummarizeContext, TestingContext, RunCodeContext, CodePlanAndChangeContext, str, None ] = "" prefix: str = "" # aask*时会加上prefix,作为system_message desc: str = "" # for skill manager node: ActionNode = Field(default=None, exclude=True) # The model name or API type of LLM of the `models` in the `config2.yaml`; # Using `None` to use the `llm` configuration in the `config2.yaml`. llm_name_or_type: Optional[str] = None @model_validator(mode="after") @classmethod def _update_private_llm(cls, data: Any) -> Any: config = ModelsConfig.default().get(data.llm_name_or_type) if config: llm = create_llm_instance(config) llm.cost_manager = data.llm.cost_manager data.llm = llm return data @property def repo(self) -> ProjectRepo: if not self.context.repo: self.context.repo = ProjectRepo(self.context.git_repo) return self.context.repo @property def prompt_schema(self): return self.config.prompt_schema @property def project_name(self): return self.config.project_name @project_name.setter def project_name(self, value): self.config.project_name = value @property def project_path(self): return self.config.project_path @model_validator(mode="before") @classmethod def set_name_if_empty(cls, values): if "name" not in values or not values["name"]: values["name"] = cls.__name__ return values @model_validator(mode="before") @classmethod def _init_with_instruction(cls, values): if "instruction" in values: name = values["name"] i = values.pop("instruction") values["node"] = ActionNode(key=name, expected_type=str, instruction=i, example="", schema="raw") return values def set_prefix(self, prefix): """Set prefix for later usage""" self.prefix = prefix self.llm.system_prompt = prefix if self.node: self.node.llm = self.llm return self def __str__(self): return self.__class__.__name__ def __repr__(self): return self.__str__() async def _aask(self, prompt: str, system_msgs: Optional[list[str]] = None) -> str: """Append default prefix""" return await self.llm.aask(prompt, system_msgs) async def _run_action_node(self, *args, **kwargs): """Run action node""" msgs = args[0] context = "## History Messages\n" context += "\n".join([f"{idx}: {i}" for idx, i in enumerate(reversed(msgs))]) return await self.node.fill(context=context, llm=self.llm) async def run(self, *args, **kwargs): """Run action""" if self.node: return await self._run_action_node(*args, **kwargs) raise NotImplementedError("The run method should be implemented in a subclass.")