SPO / app.py
XiangJinYu's picture
modify app.py adapt to enter api
85cc548 verified
raw
history blame
11.3 kB
import asyncio
from pathlib import Path
from typing import Dict
import streamlit as st
import yaml
from loguru import logger as _logger
from metagpt.const import METAGPT_ROOT
from metagpt.ext.spo.components.optimizer import PromptOptimizer
from metagpt.ext.spo.utils.llm_client import SPO_LLM, RequestType
def load_yaml_template(template_path: Path) -> Dict:
if template_path.exists():
with open(template_path, "r", encoding="utf-8") as f:
return yaml.safe_load(f)
return {"prompt": "", "requirements": "", "count": None, "qa": [{"question": "", "answer": ""}]}
def save_yaml_template(template_path: Path, data: Dict) -> None:
template_format = {
"prompt": str(data.get("prompt", "")),
"requirements": str(data.get("requirements", "")),
"count": data.get("count"),
"qa": [
{"question": str(qa.get("question", "")).strip(), "answer": str(qa.get("answer", "")).strip()}
for qa in data.get("qa", [])
],
}
template_path.parent.mkdir(parents=True, exist_ok=True)
with open(template_path, "w", encoding="utf-8") as f:
yaml.dump(template_format, f, allow_unicode=True, sort_keys=False, default_flow_style=False, indent=2)
def display_optimization_results(result_data):
for result in result_data:
round_num = result["round"]
success = result["succeed"]
prompt = result["prompt"]
with st.expander(f"Round {round_num} {':white_check_mark:' if success else ':x:'}"):
st.markdown("**Prompt:**")
st.code(prompt, language="text")
st.markdown("<br>", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.markdown(f"**Status:** {'Success ✅ ' if success else 'Failed ❌ '}")
with col2:
st.markdown(f"**Tokens:** {result['tokens']}")
st.markdown("**Answers:**")
for idx, answer in enumerate(result["answers"]):
st.markdown(f"**Question {idx + 1}:**")
st.text(answer["question"])
st.markdown("**Answer:**")
st.text(answer["answer"])
st.markdown("---")
# Summary
success_count = sum(1 for r in result_data if r["succeed"])
total_rounds = len(result_data)
st.markdown("### Summary")
col1, col2 = st.columns(2)
with col1:
st.metric("Total Rounds", total_rounds)
with col2:
st.metric("Successful Rounds", success_count)
def main():
if "optimization_results" not in st.session_state:
st.session_state.optimization_results = []
st.title("SPO | Self-Supervised Prompt Optimization 🤖")
# Sidebar for configurations
with st.sidebar:
st.header("Configuration")
# Template Selection/Creation
settings_path = Path("metagpt/ext/spo/settings")
existing_templates = [f.stem for f in settings_path.glob("*.yaml")]
template_mode = st.radio("Template Mode", ["Use Existing", "Create New"])
if template_mode == "Use Existing":
template_name = st.selectbox("Select Template", existing_templates)
else:
template_name = st.text_input("New Template Name")
if template_name and not template_name.endswith(".yaml"):
template_name = f"{template_name}"
# LLM Settings
st.subheader("LLM Settings")
base_url = st.text_input("Base URL", value="https://api.example.com")
api_key = st.text_input("API Key", type="password")
opt_model = st.selectbox(
"Optimization Model", ["gpt-4o-mini", "gpt-4o", "deepseek-chat"], index=0
)
opt_temp = st.slider("Optimization Temperature", 0.0, 1.0, 0.7)
eval_model = st.selectbox(
"Evaluation Model", ["gpt-4o-mini", "gpt-4o", "deepseek-chat"], index=0
)
eval_temp = st.slider("Evaluation Temperature", 0.0, 1.0, 0.3)
exec_model = st.selectbox(
"Execution Model", ["gpt-4o-mini", "gpt-4o", "deepseek-chat"], index=0
)
exec_temp = st.slider("Execution Temperature", 0.0, 1.0, 0.0)
# Optimizer Settings
st.subheader("Optimizer Settings")
initial_round = st.number_input("Initial Round", 1, 100, 1)
max_rounds = st.number_input("Maximum Rounds", 1, 100, 10)
# Main content area
st.header("Template Configuration")
if template_name:
template_path = settings_path / f"{template_name}.yaml"
template_data = load_yaml_template(template_path)
if "current_template" not in st.session_state or st.session_state.current_template != template_name:
st.session_state.current_template = template_name
st.session_state.qas = template_data.get("qa", [])
# Edit template sections
prompt = st.text_area("Prompt", template_data.get("prompt", ""), height=100)
requirements = st.text_area("Requirements", template_data.get("requirements", ""), height=100)
# qa section
st.subheader("Q&A Examples")
# Add new qa button
if st.button("Add New Q&A"):
st.session_state.qas.append({"question": "", "answer": ""})
# Edit qas
new_qas = []
for i in range(len(st.session_state.qas)):
st.markdown(f"**QA #{i + 1}**")
col1, col2, col3 = st.columns([45, 45, 10])
with col1:
question = st.text_area(
f"Question {i + 1}", st.session_state.qas[i].get("question", ""), key=f"q_{i}", height=100
)
with col2:
answer = st.text_area(
f"Answer {i + 1}", st.session_state.qas[i].get("answer", ""), key=f"a_{i}", height=100
)
with col3:
if st.button("🗑️", key=f"delete_{i}"):
st.session_state.qas.pop(i)
st.rerun()
new_qas.append({"question": question, "answer": answer})
# Save template button
if st.button("Save Template"):
new_template_data = {"prompt": prompt, "requirements": requirements, "count": None, "qa": new_qas}
save_yaml_template(template_path, new_template_data)
st.session_state.qas = new_qas
st.success(f"Template saved to {template_path}")
st.subheader("Current Template Preview")
preview_data = {"qa": new_qas, "requirements": requirements, "prompt": prompt}
st.code(yaml.dump(preview_data, allow_unicode=True), language="yaml")
st.subheader("Optimization Logs")
log_container = st.empty()
class StreamlitSink:
def write(self, message):
current_logs = st.session_state.get("logs", [])
current_logs.append(message.strip())
st.session_state.logs = current_logs
log_container.code("\n".join(current_logs), language="plaintext")
streamlit_sink = StreamlitSink()
_logger.remove()
def prompt_optimizer_filter(record):
return "optimizer" in record["name"].lower()
_logger.add(
streamlit_sink.write,
format="{time:YYYY-MM-DD HH:mm:ss.SSS} | {level: <8} | {name}:{function}:{line} - {message}",
filter=prompt_optimizer_filter,
)
_logger.add(METAGPT_ROOT / "logs/{time:YYYYMMDD}.txt", level="DEBUG")
# Start optimization button
if st.button("Start Optimization"):
try:
# Initialize LLM
SPO_LLM.initialize(
optimize_kwargs={"model": opt_model, "temperature": opt_temp, "base_url": base_url, "api_key": api_key},
evaluate_kwargs={"model": eval_model, "temperature": eval_temp, "base_url": base_url, "api_key": api_key},
execute_kwargs={"model": exec_model, "temperature": exec_temp, "base_url": base_url, "api_key": api_key},
)
# Create optimizer instance
optimizer = PromptOptimizer(
optimized_path="workspace",
initial_round=initial_round,
max_rounds=max_rounds,
template=f"{template_name}.yaml",
name=template_name,
)
# Run optimization with progress bar
with st.spinner("Optimizing prompts..."):
optimizer.optimize()
st.success("Optimization completed!")
st.header("Optimization Results")
prompt_path = optimizer.root_path / "prompts"
result_data = optimizer.data_utils.load_results(prompt_path)
st.session_state.optimization_results = result_data
except Exception as e:
st.error(f"An error occurred: {str(e)}")
_logger.error(f"Error during optimization: {str(e)}")
if st.session_state.optimization_results:
st.header("Optimization Results")
display_optimization_results(st.session_state.optimization_results)
st.markdown("---")
st.subheader("Test Optimized Prompt")
col1, col2 = st.columns(2)
with col1:
test_prompt = st.text_area("Optimized Prompt", value="", height=200, key="test_prompt")
with col2:
test_question = st.text_area("Your Question", value="", height=200, key="test_question")
if st.button("Test Prompt"):
if test_prompt and test_question:
try:
with st.spinner("Generating response..."):
SPO_LLM.initialize(
optimize_kwargs={"model": opt_model, "temperature": opt_temp, "base_url": base_url,
"api_key": api_key},
evaluate_kwargs={"model": eval_model, "temperature": eval_temp, "base_url": base_url,
"api_key": api_key},
execute_kwargs={"model": exec_model, "temperature": exec_temp, "base_url": base_url,
"api_key": api_key},
)
llm = SPO_LLM.get_instance()
messages = [{"role": "user", "content": f"{test_prompt}\n\n{test_question}"}]
async def get_response():
return await llm.responser(request_type=RequestType.EXECUTE, messages=messages)
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
response = loop.run_until_complete(get_response())
finally:
loop.close()
st.subheader("Response:")
st.markdown(response)
except Exception as e:
st.error(f"Error generating response: {str(e)}")
else:
st.warning("Please enter both prompt and question.")
if __name__ == "__main__":
main()