File size: 11,271 Bytes
0a59e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85cc548
 
 
 
0a59e16
85cc548
0a59e16
 
 
 
85cc548
0a59e16
 
 
 
85cc548
0a59e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85cc548
 
 
0a59e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85cc548
 
 
 
 
 
0a59e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import asyncio
from pathlib import Path
from typing import Dict

import streamlit as st
import yaml
from loguru import logger as _logger

from metagpt.const import METAGPT_ROOT
from metagpt.ext.spo.components.optimizer import PromptOptimizer
from metagpt.ext.spo.utils.llm_client import SPO_LLM, RequestType


def load_yaml_template(template_path: Path) -> Dict:
    if template_path.exists():
        with open(template_path, "r", encoding="utf-8") as f:
            return yaml.safe_load(f)
    return {"prompt": "", "requirements": "", "count": None, "qa": [{"question": "", "answer": ""}]}


def save_yaml_template(template_path: Path, data: Dict) -> None:
    template_format = {
        "prompt": str(data.get("prompt", "")),
        "requirements": str(data.get("requirements", "")),
        "count": data.get("count"),
        "qa": [
            {"question": str(qa.get("question", "")).strip(), "answer": str(qa.get("answer", "")).strip()}
            for qa in data.get("qa", [])
        ],
    }

    template_path.parent.mkdir(parents=True, exist_ok=True)

    with open(template_path, "w", encoding="utf-8") as f:
        yaml.dump(template_format, f, allow_unicode=True, sort_keys=False, default_flow_style=False, indent=2)


def display_optimization_results(result_data):
    for result in result_data:
        round_num = result["round"]
        success = result["succeed"]
        prompt = result["prompt"]

        with st.expander(f"Round {round_num} {':white_check_mark:' if success else ':x:'}"):
            st.markdown("**Prompt:**")
            st.code(prompt, language="text")
            st.markdown("<br>", unsafe_allow_html=True)

            col1, col2 = st.columns(2)
            with col1:
                st.markdown(f"**Status:** {'Success ✅ ' if success else 'Failed ❌ '}")
            with col2:
                st.markdown(f"**Tokens:** {result['tokens']}")

            st.markdown("**Answers:**")
            for idx, answer in enumerate(result["answers"]):
                st.markdown(f"**Question {idx + 1}:**")
                st.text(answer["question"])
                st.markdown("**Answer:**")
                st.text(answer["answer"])
                st.markdown("---")

    # Summary
    success_count = sum(1 for r in result_data if r["succeed"])
    total_rounds = len(result_data)

    st.markdown("### Summary")
    col1, col2 = st.columns(2)
    with col1:
        st.metric("Total Rounds", total_rounds)
    with col2:
        st.metric("Successful Rounds", success_count)


def main():
    if "optimization_results" not in st.session_state:
        st.session_state.optimization_results = []

    st.title("SPO | Self-Supervised Prompt Optimization 🤖")

    # Sidebar for configurations
    with st.sidebar:
        st.header("Configuration")

        # Template Selection/Creation
        settings_path = Path("metagpt/ext/spo/settings")
        existing_templates = [f.stem for f in settings_path.glob("*.yaml")]

        template_mode = st.radio("Template Mode", ["Use Existing", "Create New"])

        if template_mode == "Use Existing":
            template_name = st.selectbox("Select Template", existing_templates)
        else:
            template_name = st.text_input("New Template Name")
            if template_name and not template_name.endswith(".yaml"):
                template_name = f"{template_name}"

        # LLM Settings
        st.subheader("LLM Settings")

        base_url = st.text_input("Base URL", value="https://api.example.com")
        api_key = st.text_input("API Key", type="password")

        opt_model = st.selectbox(
            "Optimization Model", ["gpt-4o-mini", "gpt-4o", "deepseek-chat"], index=0
        )
        opt_temp = st.slider("Optimization Temperature", 0.0, 1.0, 0.7)

        eval_model = st.selectbox(
            "Evaluation Model", ["gpt-4o-mini", "gpt-4o", "deepseek-chat"], index=0
        )
        eval_temp = st.slider("Evaluation Temperature", 0.0, 1.0, 0.3)

        exec_model = st.selectbox(
            "Execution Model", ["gpt-4o-mini", "gpt-4o", "deepseek-chat"], index=0
        )
        exec_temp = st.slider("Execution Temperature", 0.0, 1.0, 0.0)

        # Optimizer Settings
        st.subheader("Optimizer Settings")
        initial_round = st.number_input("Initial Round", 1, 100, 1)
        max_rounds = st.number_input("Maximum Rounds", 1, 100, 10)

    # Main content area
    st.header("Template Configuration")

    if template_name:
        template_path = settings_path / f"{template_name}.yaml"
        template_data = load_yaml_template(template_path)

        if "current_template" not in st.session_state or st.session_state.current_template != template_name:
            st.session_state.current_template = template_name
            st.session_state.qas = template_data.get("qa", [])

        # Edit template sections
        prompt = st.text_area("Prompt", template_data.get("prompt", ""), height=100)
        requirements = st.text_area("Requirements", template_data.get("requirements", ""), height=100)

        # qa section
        st.subheader("Q&A Examples")

        # Add new qa button
        if st.button("Add New Q&A"):
            st.session_state.qas.append({"question": "", "answer": ""})

        # Edit qas
        new_qas = []
        for i in range(len(st.session_state.qas)):
            st.markdown(f"**QA #{i + 1}**")
            col1, col2, col3 = st.columns([45, 45, 10])

            with col1:
                question = st.text_area(
                    f"Question {i + 1}", st.session_state.qas[i].get("question", ""), key=f"q_{i}", height=100
                )
            with col2:
                answer = st.text_area(
                    f"Answer {i + 1}", st.session_state.qas[i].get("answer", ""), key=f"a_{i}", height=100
                )
            with col3:
                if st.button("🗑️", key=f"delete_{i}"):
                    st.session_state.qas.pop(i)
                    st.rerun()

            new_qas.append({"question": question, "answer": answer})

        # Save template button
        if st.button("Save Template"):
            new_template_data = {"prompt": prompt, "requirements": requirements, "count": None, "qa": new_qas}

            save_yaml_template(template_path, new_template_data)

            st.session_state.qas = new_qas
            st.success(f"Template saved to {template_path}")

        st.subheader("Current Template Preview")
        preview_data = {"qa": new_qas, "requirements": requirements, "prompt": prompt}
        st.code(yaml.dump(preview_data, allow_unicode=True), language="yaml")

        st.subheader("Optimization Logs")
        log_container = st.empty()

        class StreamlitSink:
            def write(self, message):
                current_logs = st.session_state.get("logs", [])
                current_logs.append(message.strip())
                st.session_state.logs = current_logs

                log_container.code("\n".join(current_logs), language="plaintext")

        streamlit_sink = StreamlitSink()
        _logger.remove()

        def prompt_optimizer_filter(record):
            return "optimizer" in record["name"].lower()

        _logger.add(
            streamlit_sink.write,
            format="{time:YYYY-MM-DD HH:mm:ss.SSS} | {level: <8} | {name}:{function}:{line} - {message}",
            filter=prompt_optimizer_filter,
        )
        _logger.add(METAGPT_ROOT / "logs/{time:YYYYMMDD}.txt", level="DEBUG")

        # Start optimization button
        if st.button("Start Optimization"):
            try:
                # Initialize LLM
                SPO_LLM.initialize(
                    optimize_kwargs={"model": opt_model, "temperature": opt_temp, "base_url": base_url, "api_key": api_key},
                    evaluate_kwargs={"model": eval_model, "temperature": eval_temp, "base_url": base_url, "api_key": api_key},
                    execute_kwargs={"model": exec_model, "temperature": exec_temp, "base_url": base_url, "api_key": api_key},
                )

                # Create optimizer instance
                optimizer = PromptOptimizer(
                    optimized_path="workspace",
                    initial_round=initial_round,
                    max_rounds=max_rounds,
                    template=f"{template_name}.yaml",
                    name=template_name,
                )

                # Run optimization with progress bar
                with st.spinner("Optimizing prompts..."):
                    optimizer.optimize()

                st.success("Optimization completed!")

                st.header("Optimization Results")

                prompt_path = optimizer.root_path / "prompts"
                result_data = optimizer.data_utils.load_results(prompt_path)

                st.session_state.optimization_results = result_data

            except Exception as e:
                st.error(f"An error occurred: {str(e)}")
                _logger.error(f"Error during optimization: {str(e)}")

        if st.session_state.optimization_results:
            st.header("Optimization Results")
            display_optimization_results(st.session_state.optimization_results)

        st.markdown("---")
        st.subheader("Test Optimized Prompt")
        col1, col2 = st.columns(2)

        with col1:
            test_prompt = st.text_area("Optimized Prompt", value="", height=200, key="test_prompt")

        with col2:
            test_question = st.text_area("Your Question", value="", height=200, key="test_question")

        if st.button("Test Prompt"):
            if test_prompt and test_question:
                try:
                    with st.spinner("Generating response..."):
                        SPO_LLM.initialize(
                            optimize_kwargs={"model": opt_model, "temperature": opt_temp, "base_url": base_url,
                                             "api_key": api_key},
                            evaluate_kwargs={"model": eval_model, "temperature": eval_temp, "base_url": base_url,
                                             "api_key": api_key},
                            execute_kwargs={"model": exec_model, "temperature": exec_temp, "base_url": base_url,
                                            "api_key": api_key},
                        )

                        llm = SPO_LLM.get_instance()
                        messages = [{"role": "user", "content": f"{test_prompt}\n\n{test_question}"}]

                        async def get_response():
                            return await llm.responser(request_type=RequestType.EXECUTE, messages=messages)

                        loop = asyncio.new_event_loop()
                        asyncio.set_event_loop(loop)
                        try:
                            response = loop.run_until_complete(get_response())
                        finally:
                            loop.close()

                        st.subheader("Response:")
                        st.markdown(response)

                except Exception as e:
                    st.error(f"Error generating response: {str(e)}")
            else:
                st.warning("Please enter both prompt and question.")


if __name__ == "__main__":
    main()