Spaces:
Bradarr
/
Running on Zero

Bradarr commited on
Commit
d22992a
·
verified ·
1 Parent(s): 2147e35

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -43,7 +43,7 @@ This demo allows you to have a conversation with Sesame CSM 1B, leveraging Whisp
43
  # --- Constants --- (Constants can stay outside)
44
  SPEAKER_ID = 0
45
  MAX_CONTEXT_SEGMENTS = 5
46
- MAX_GEMMA_LENGTH = 300
47
 
48
  # --- Global Conversation History ---
49
  conversation_history = []
@@ -62,7 +62,7 @@ def transcribe_audio(audio_path: str, whisper_model) -> str: # Pass whisper_mod
62
 
63
  def generate_response(text: str, model_gemma, tokenizer_gemma, device) -> str: # Pass model and tokenizer
64
  try:
65
- input_text = "Here is a response to the user: " + text
66
  input = tokenizer_gemma(input_text, return_tensors="pt").to(device)
67
  generated_output = model_gemma.generate(**input, max_length=MAX_GEMMA_LENGTH, early_stopping=True)
68
  return tokenizer_gemma.decode(generated_output[0], skip_special_tokens=True)
@@ -110,7 +110,7 @@ def infer(user_audio) -> tuple[int, np.ndarray]:
110
  whisper_model = whisper.load_model("small.en", device=device)
111
  logging.info("Whisper model loaded successfully.")
112
 
113
- tokenizer_gemma = AutoTokenizer.from_pretrained("google/gemma-3-1b-pt")
114
  model_gemma = AutoModelForCausalLM.from_pretrained("google/gemma-3-1b-it").to(device)
115
  logging.info("Gemma 3 1B pt model loaded successfully.")
116
 
 
43
  # --- Constants --- (Constants can stay outside)
44
  SPEAKER_ID = 0
45
  MAX_CONTEXT_SEGMENTS = 5
46
+ MAX_GEMMA_LENGTH = 150
47
 
48
  # --- Global Conversation History ---
49
  conversation_history = []
 
62
 
63
  def generate_response(text: str, model_gemma, tokenizer_gemma, device) -> str: # Pass model and tokenizer
64
  try:
65
+ input_text = "Reapond to the user: " + text
66
  input = tokenizer_gemma(input_text, return_tensors="pt").to(device)
67
  generated_output = model_gemma.generate(**input, max_length=MAX_GEMMA_LENGTH, early_stopping=True)
68
  return tokenizer_gemma.decode(generated_output[0], skip_special_tokens=True)
 
110
  whisper_model = whisper.load_model("small.en", device=device)
111
  logging.info("Whisper model loaded successfully.")
112
 
113
+ tokenizer_gemma = AutoTokenizer.from_pretrained("google/gemma-3-1b-it")
114
  model_gemma = AutoModelForCausalLM.from_pretrained("google/gemma-3-1b-it").to(device)
115
  logging.info("Gemma 3 1B pt model loaded successfully.")
116