Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
12 |
import logging
|
13 |
|
14 |
# Configure logging
|
15 |
-
logging.basicConfig(level=logging.
|
16 |
|
17 |
# --- Authentication and Configuration --- (Moved BEFORE model loading)
|
18 |
try:
|
@@ -62,7 +62,7 @@ def transcribe_audio(audio_path: str, whisper_model) -> str: # Pass whisper_mod
|
|
62 |
|
63 |
def generate_response(text: str, model_gemma, tokenizer_gemma, device) -> str: # Pass model and tokenizer
|
64 |
try:
|
65 |
-
input_text = "Here is a response
|
66 |
input = tokenizer_gemma(input_text, return_tensors="pt").to(device)
|
67 |
generated_output = model_gemma.generate(**input, max_length=MAX_GEMMA_LENGTH, early_stopping=True)
|
68 |
return tokenizer_gemma.decode(generated_output[0], skip_special_tokens=True)
|
@@ -111,7 +111,7 @@ def infer(user_audio) -> tuple[int, np.ndarray]:
|
|
111 |
logging.info("Whisper model loaded successfully.")
|
112 |
|
113 |
tokenizer_gemma = AutoTokenizer.from_pretrained("google/gemma-3-1b-pt")
|
114 |
-
model_gemma = AutoModelForCausalLM.from_pretrained("google/gemma-3-1b-
|
115 |
logging.info("Gemma 3 1B pt model loaded successfully.")
|
116 |
|
117 |
if not user_audio:
|
|
|
12 |
import logging
|
13 |
|
14 |
# Configure logging
|
15 |
+
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
16 |
|
17 |
# --- Authentication and Configuration --- (Moved BEFORE model loading)
|
18 |
try:
|
|
|
62 |
|
63 |
def generate_response(text: str, model_gemma, tokenizer_gemma, device) -> str: # Pass model and tokenizer
|
64 |
try:
|
65 |
+
input_text = "Here is a response to the user: " + text
|
66 |
input = tokenizer_gemma(input_text, return_tensors="pt").to(device)
|
67 |
generated_output = model_gemma.generate(**input, max_length=MAX_GEMMA_LENGTH, early_stopping=True)
|
68 |
return tokenizer_gemma.decode(generated_output[0], skip_special_tokens=True)
|
|
|
111 |
logging.info("Whisper model loaded successfully.")
|
112 |
|
113 |
tokenizer_gemma = AutoTokenizer.from_pretrained("google/gemma-3-1b-pt")
|
114 |
+
model_gemma = AutoModelForCausalLM.from_pretrained("google/gemma-3-1b-it").to(device)
|
115 |
logging.info("Gemma 3 1B pt model loaded successfully.")
|
116 |
|
117 |
if not user_audio:
|