Spaces:
Runtime error
Runtime error
import streamlit as st | |
import random | |
import spacy | |
import requests | |
from bs4 import BeautifulSoup | |
import re | |
import spacy | |
import language_tool_python | |
import json | |
from gradio_client import Client | |
API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-mnli" | |
headers = {"Authorization": "Bearer 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"} | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
# Define the grammar_sense function | |
def grammar_sense(sentence): | |
sense = query({ | |
"inputs": sentence, | |
"parameters": {"candidate_labels": ["Make Sense", "Not Make Sense"]}, | |
}) | |
grammar = query({ | |
"inputs": sentence, | |
"parameters": {"candidate_labels": ["Correct Grammar", "Incorrect Grammar"]}, | |
}) | |
objects = ["Sense", "Grammar"] | |
ans = [] | |
for i in objects: | |
if i == "Sense": | |
response_data = json.loads(json.dumps(sense)) | |
labels = response_data['labels'] | |
scores = response_data['scores'] | |
index_of_highest_score = scores.index(max(scores)) | |
highest_score_label = labels[index_of_highest_score] | |
ans.append(highest_score_label) | |
else: | |
response_data = json.loads(json.dumps(grammar)) | |
labels = response_data['labels'] | |
scores = response_data['scores'] | |
index_of_highest_score = scores.index(max(scores)) | |
highest_score_label = labels[index_of_highest_score] | |
ans.append(highest_score_label) | |
if not 'Not' in ans[0] and ans[1] == 'Correct Grammar': | |
return True | |
else: | |
return False | |
# Initialize LanguageTool | |
tool = language_tool_python.LanguageToolPublicAPI('en-US') | |
# Define the Streamlit app | |
st.title("NLP Testing and Scoring App") | |
# Ask for the topic at the start | |
topic = st.text_input("Enter a topic:") | |
# Web scraping and text cleaning | |
entity = "Florida" # You can replace this with the user's topic input | |
if topic: | |
entity = topic # Use the user's input as the entity | |
prefix = "https://wiki.kidzsearch.com/wiki/" | |
page = requests.get(f'{prefix}{entity}') | |
res = BeautifulSoup(page.content, 'html.parser') | |
text = [i.get_text() for i in res.find_all('p')] | |
cleaned_text = ' '.join(text) | |
cleaned_text = re.sub(r'[^a-zA-Z0-9.,]', ' ', cleaned_text) | |
paragraphs = [p.strip() for p in re.split(r'\n', cleaned_text) if p.strip()] | |
# Process text using SpaCy | |
nlp = spacy.load("en_core_web_sm") | |
doc = nlp(cleaned_text) | |
sentences = [sent.text for sent in doc.sents] | |
# Combine sentences into paragraphs | |
paragraphs = [f"{sentences[i]} {sentences[i + 1]}" if i + 1 < len(sentences) else sentences[i] for i in range(0, len(sentences), 2)] | |
class SubjectiveTest: | |
def __init__(self, data, noOfQues): | |
self.summary = data | |
self.noOfQues = noOfQues | |
self.nlp = spacy.load("en_core_web_sm") | |
def adjust_question_pattern(self, entity_label, topic_placeholder=True): | |
question_patterns = { | |
"PERSON": ["Who is {entity}?", "Tell me about {entity}", "What do you know about {entity}"], | |
"ORG": ["What is {entity}?", "Tell me about {entity}", "What do you know about {entity}"], | |
"GPE": ["Tell me about {entity}", "What do you know about {entity}", "Where is {entity}"], | |
"MONEY": ["How much is {entity}?", "Tell me the value of {entity}"], | |
"DATE": ["Why was {entity} important?"], | |
# Add more entity-label to question-pattern mappings as needed | |
} | |
if topic_placeholder: | |
for key in question_patterns: | |
question_patterns[key] = [pattern + " {topic}" for pattern in question_patterns[key]] | |
return question_patterns.get(entity_label, "Explain") | |
def generate_test(self, topic=None): | |
doc = self.nlp(self.summary) | |
question_answer_dict = dict() | |
for sentence in doc.sents: | |
for ent in sentence.ents: | |
entity_label = ent.label_ | |
entity_text = ent.text | |
question_patterns = self.adjust_question_pattern(entity_label, "") | |
for pattern in question_patterns: | |
question = pattern.format(entity=entity_text, topic=topic) | |
if entity_label in question_answer_dict: | |
question_answer_dict[entity_label].append(question) | |
else: | |
question_answer_dict[entity_label] = [question] | |
questions = [] | |
for entity_label, entity_questions in question_answer_dict.items(): | |
entity_questions = entity_questions[:self.noOfQues] | |
if "Explain" in entity_questions: | |
continue | |
else: | |
questions.extend(entity_questions) | |
return questions | |
with st.form("quiz_form"): | |
# Create a button to initiate quiz generation | |
generate_quiz = st.form_submit_button("Generate Quiz") | |
if generate_quiz: | |
st.write("Generating the quiz...") | |
data = ' '.join(paragraphs) | |
noOfQues = 5 | |
subjective_generator = SubjectiveTest(data, noOfQues) | |
questions = subjective_generator.generate_test(topic) # Use the user's input topic here | |
# Filter out invalid and empty questions | |
x = 0 | |
while x > len(questions): | |
for i in questions: | |
if len(i) == 1: | |
questions.pop(x) | |
x = x + 1 | |
else: | |
x = x + 1 | |
# Ensure you have valid questions | |
if not questions: | |
st.write("No valid questions to process.") | |
else: | |
answers = {} # Dictionary to store answers | |
# Use the filtered questions in your code | |
for i, question in enumerate(questions): | |
res = st.text_input(f'Q{i + 1}: {question}') # Get user input for each question | |
answers[f'Q{i + 1}'] = res # Store the user's answer | |
scores = [] | |
client = Client("https://billbojangeles2000-zephyr-7b-alpha-chatbot-karki.hf.space/") | |
question_list = subjective_generator.generate_test(topic) # Define 'questions' here | |
questions = [] | |
for i, question in enumerate(question_list): | |
if (question != "") and (len(tool.check(question)) == 0) and (grammar_sense(question)): | |
questions.append(f"Question: {question}") | |
for i, question in enumerate(questions): | |
res = answers[f'Q{i + 1}'] | |
if res: | |
result = client.predict( | |
f'What would you rate this answer to the question: "{question}" as a percentage? Here is the answer: {res}. Make sure to write your answer as "Score" and then write your score of the response.', | |
0.9, | |
256, | |
0.9, | |
1.2, | |
api_name="/chat" | |
) | |
pattern = r'(\d+)%' | |
match = re.search(pattern, result) | |
if match: | |
score = int(match.group(1)) | |
scores.append(score) | |
else: | |
scores.append(85) | |
def calculate_average(numbers): | |
if not numbers: | |
return 0 # Return 0 for an empty list to avoid division by zero. | |
total = sum(numbers) | |
average = total / len(numbers) | |
return average | |
# Calculate and display the average score | |
average_score = calculate_average(scores) | |
st.write(f'Your average score is {average_score}') |