Spaces:
Runtime error
Runtime error
File size: 7,540 Bytes
5a44472 a485681 f0f53a6 6746bb1 740397e 6746bb1 f0f53a6 740397e a485681 740397e 0f843c9 740397e 5a44472 740397e f0f53a6 5a44472 9ca337b a1f74de 9ca337b 5a44472 987bab3 5a44472 138fa66 5a44472 ed5d2a9 5a44472 a5867f3 5a44472 22156ab 5a44472 fca80c7 762e183 5a44472 7d0c38a 5a44472 edc4138 5a44472 22156ab 789590c 5a44472 db212dc 5a44472 987bab3 edc4138 987bab3 f0f53a6 987bab3 9ca337b 762e183 b810080 a1f74de 762e183 cc14a13 762e183 cc14a13 762e183 8fbd44d 762e183 987bab3 762e183 cc14a13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import streamlit as st
import random
import spacy
import requests
from bs4 import BeautifulSoup
import re
import spacy
import language_tool_python
import json
from gradio_client import Client
API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-mnli"
headers = {"Authorization": "Bearer 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"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# Define the grammar_sense function
def grammar_sense(sentence):
sense = query({
"inputs": sentence,
"parameters": {"candidate_labels": ["Make Sense", "Not Make Sense"]},
})
grammar = query({
"inputs": sentence,
"parameters": {"candidate_labels": ["Correct Grammar", "Incorrect Grammar"]},
})
objects = ["Sense", "Grammar"]
ans = []
for i in objects:
if i == "Sense":
response_data = json.loads(json.dumps(sense))
labels = response_data['labels']
scores = response_data['scores']
index_of_highest_score = scores.index(max(scores))
highest_score_label = labels[index_of_highest_score]
ans.append(highest_score_label)
else:
response_data = json.loads(json.dumps(grammar))
labels = response_data['labels']
scores = response_data['scores']
index_of_highest_score = scores.index(max(scores))
highest_score_label = labels[index_of_highest_score]
ans.append(highest_score_label)
if not 'Not' in ans[0] and ans[1] == 'Correct Grammar':
return True
else:
return False
# Initialize LanguageTool
tool = language_tool_python.LanguageToolPublicAPI('en-US')
# Define the Streamlit app
st.title("NLP Testing and Scoring App")
# Ask for the topic at the start
topic = st.text_input("Enter a topic:")
# Web scraping and text cleaning
entity = "Florida" # You can replace this with the user's topic input
if topic:
entity = topic # Use the user's input as the entity
prefix = "https://wiki.kidzsearch.com/wiki/"
page = requests.get(f'{prefix}{entity}')
res = BeautifulSoup(page.content, 'html.parser')
text = [i.get_text() for i in res.find_all('p')]
cleaned_text = ' '.join(text)
cleaned_text = re.sub(r'[^a-zA-Z0-9.,]', ' ', cleaned_text)
paragraphs = [p.strip() for p in re.split(r'\n', cleaned_text) if p.strip()]
# Process text using SpaCy
nlp = spacy.load("en_core_web_sm")
doc = nlp(cleaned_text)
sentences = [sent.text for sent in doc.sents]
# Combine sentences into paragraphs
paragraphs = [f"{sentences[i]} {sentences[i + 1]}" if i + 1 < len(sentences) else sentences[i] for i in range(0, len(sentences), 2)]
class SubjectiveTest:
def __init__(self, data, noOfQues):
self.summary = data
self.noOfQues = noOfQues
self.nlp = spacy.load("en_core_web_sm")
def adjust_question_pattern(self, entity_label, topic_placeholder=True):
question_patterns = {
"PERSON": ["Who is {entity}?", "Tell me about {entity}", "What do you know about {entity}"],
"ORG": ["What is {entity}?", "Tell me about {entity}", "What do you know about {entity}"],
"GPE": ["Tell me about {entity}", "What do you know about {entity}", "Where is {entity}"],
"MONEY": ["How much is {entity}?", "Tell me the value of {entity}"],
"DATE": ["Why was {entity} important?"],
# Add more entity-label to question-pattern mappings as needed
}
if topic_placeholder:
for key in question_patterns:
question_patterns[key] = [pattern + " {topic}" for pattern in question_patterns[key]]
return question_patterns.get(entity_label, "Explain")
def generate_test(self, topic=None):
doc = self.nlp(self.summary)
question_answer_dict = dict()
for sentence in doc.sents:
for ent in sentence.ents:
entity_label = ent.label_
entity_text = ent.text
question_patterns = self.adjust_question_pattern(entity_label, "")
for pattern in question_patterns:
question = pattern.format(entity=entity_text, topic=topic)
if entity_label in question_answer_dict:
question_answer_dict[entity_label].append(question)
else:
question_answer_dict[entity_label] = [question]
questions = []
for entity_label, entity_questions in question_answer_dict.items():
entity_questions = entity_questions[:self.noOfQues]
if "Explain" in entity_questions:
continue
else:
questions.extend(entity_questions)
return questions
with st.form("quiz_form"):
# Create a button to initiate quiz generation
generate_quiz = st.form_submit_button("Generate Quiz")
if generate_quiz:
st.write("Generating the quiz...")
data = ' '.join(paragraphs)
noOfQues = 5
subjective_generator = SubjectiveTest(data, noOfQues)
questions = subjective_generator.generate_test(topic) # Use the user's input topic here
# Filter out invalid and empty questions
x = 0
while x > len(questions):
for i in questions:
if len(i) == 1:
questions.pop(x)
x = x + 1
else:
x = x + 1
# Ensure you have valid questions
if not questions:
st.write("No valid questions to process.")
else:
answers = {} # Dictionary to store answers
# Use the filtered questions in your code
for i, question in enumerate(questions):
res = st.text_input(f'Q{i + 1}: {question}') # Get user input for each question
answers[f'Q{i + 1}'] = res # Store the user's answer
scores = []
client = Client("https://billbojangeles2000-zephyr-7b-alpha-chatbot-karki.hf.space/")
question_list = subjective_generator.generate_test(topic) # Define 'questions' here
questions = []
for i, question in enumerate(question_list):
if (question != "") and (len(tool.check(question)) == 0) and (grammar_sense(question)):
questions.append(f"Question: {question}")
for i, question in enumerate(questions):
res = answers[f'Q{i + 1}']
if res:
result = client.predict(
f'What would you rate this answer to the question: "{question}" as a percentage? Here is the answer: {res}. Make sure to write your answer as "Score" and then write your score of the response.',
0.9,
256,
0.9,
1.2,
api_name="/chat"
)
pattern = r'(\d+)%'
match = re.search(pattern, result)
if match:
score = int(match.group(1))
scores.append(score)
else:
scores.append(85)
def calculate_average(numbers):
if not numbers:
return 0 # Return 0 for an empty list to avoid division by zero.
total = sum(numbers)
average = total / len(numbers)
return average
# Calculate and display the average score
average_score = calculate_average(scores)
st.write(f'Your average score is {average_score}') |