File size: 10,918 Bytes
8abbcd4 e144732 8abbcd4 e144732 8abbcd4 71cbee5 8abbcd4 9add4bc 8abbcd4 71cbee5 e144732 8abbcd4 71cbee5 8abbcd4 e144732 8abbcd4 71cbee5 8abbcd4 61e7296 8abbcd4 61e7296 79f5312 61e7296 8abbcd4 5811564 8abbcd4 5811564 8abbcd4 61e7296 8abbcd4 61e7296 8abbcd4 61e7296 8abbcd4 61e7296 8abbcd4 61e7296 8abbcd4 61e7296 8abbcd4 61e7296 8abbcd4 61e7296 8abbcd4 61e7296 8abbcd4 61e7296 8abbcd4 61e7296 8abbcd4 61e7296 e144732 61e7296 8abbcd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import gradio as gr
# Markdown text with instructions for running the script locally.
instructions = """
# How to Run Bifrost's Bitnet SFT Training Script Locally
This Space shows you how to run the SFT fine-tuning training script on your own machine or on a GPU space.
## Instructions:
1. **Install Dependencies:**
Ensure you have Python 3.10 or above. Install the required packages by running this in a requirements.txt:
```
torch==2.6.0
pandas
sympy
scikit-learn==1.6.1
huggingface-hub
beartype
matplotlib==3.10.3
bitnet
git+https://github.com/shumingma/transformers.git#egg=transformers
```
Your `requirements.txt` should include all necessary packages and install your custom GitHub fork of `transformers` last.
2. **Review or Edit the Training Script:**
Copy the script then open the `bitnet_sft_training.py` file (or whichever file contains the SFT training script) to review the code and adjust hyperparameters, file paths, or other settings as needed.
3. **Run the Script Locally:**
From the terminal, execute:
```
python bitnet_sft_training.py
```
This will start the fine-tuning process. Check your terminal for training loss logs and progress messages.
4. **Troubleshooting Tips:**
- If you’re running on a CPU-only machine, ensure the model is loaded in `torch.float32` instead of `torch.bfloat16`.
- Verify that your dataset paths and configurations match your local environment.
Enjoy fine-tuning your model locally!
"""
sft_training_script = r'''import os
import sys
import json
import logging
import random
import numpy as np
import torch
import tqdm
import datasets
from datasets import load_dataset
from torch.utils.data import DataLoader, Dataset
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from zeta.optim import StableAdamWUnfused
import pkg_resources
import sys
# Suppress TorchDynamo errors (this will fallback to eager mode)
import torch._dynamo
torch._dynamo.config.suppress_errors = True
##################
# Data Processing
##################
def formatting_func(example):
"""
Formats an example using the new style.
"""
text = f"### Question: {example['instruction']}\n ### Answer: {example['output']}"
return text
# ---------------------------------------------------------------------------------
# Constants
# ---------------------------------------------------------------------------------
NUM_BATCHES = 6
BATCH_SIZE = 2
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 2e-4
VALIDATE_EVERY = 5
GENERATE_EVERY = 10
GENERATE_LENGTH = 512
###############
# Setup logging
###############
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = 1
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# ---------------------------------------------------------------------------------
# Load Hugging Face model and tokenizer
# ---------------------------------------------------------------------------------
model_id = "microsoft/bitnet-b1.58-2B-4T-bf16"
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16
)
hf_save_dir = "./bitnet"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
print("CUDA is available. Using GPU:", torch.cuda.get_device_name(0))
else:
print("CUDA not available; using CPU.")
model.to(device)
print(f"Loaded pre-trained Hugging Face model '{model_id}'.")
# ---------------------------------------------------------------------------------
# Load new Hugging Face dataset and preprocess it using the new formatting_func
# ---------------------------------------------------------------------------------
# Load the dataset from Hugging Face
full_dataset = load_dataset("Bifrost-AI/Solana-blockchain-360-Coding", split="train")
def preprocess_function(example):
# Format the example using the new formatting function.
formatted_text = formatting_func(example)
# Determine the prompt portion by looking for the answer marker.
answer_marker = "### Answer:"
if answer_marker in formatted_text:
# Include the answer marker in the prompt.
prompt_text = formatted_text.split(answer_marker, 1)[0] + answer_marker
else:
prompt_text = formatted_text
# Tokenize the full formatted text.
tokenized_full = tokenizer(formatted_text, truncation=True, padding=False)
# Tokenize only the prompt portion to measure its token length.
tokenized_prompt = tokenizer(prompt_text, truncation=True, padding=False)
prompt_len = len(tokenized_prompt["input_ids"])
input_ids = tokenized_full["input_ids"]
labels = input_ids.copy()
# Mask the prompt tokens (loss computed only on answer tokens)
for i in range(prompt_len):
labels[i] = -100
return {
"input_ids": torch.tensor(input_ids, dtype=torch.long),
"labels": torch.tensor(labels, dtype=torch.long),
"prompt_len": prompt_len
}
# Apply preprocessing and remove the original columns.
processed_dataset = full_dataset.map(preprocess_function, remove_columns=full_dataset.column_names)
# Set the format so that when the dataset is indexed, the fields are torch tensors.
processed_dataset.set_format(type="torch", columns=["input_ids", "labels", "prompt_len"])
# Split the processed dataset into train and validation sets (90/10 split).
split_idx = int(0.9 * len(processed_dataset))
train_dataset = torch.utils.data.Subset(processed_dataset, list(range(0, split_idx)))
val_dataset = torch.utils.data.Subset(processed_dataset, list(range(split_idx, len(processed_dataset))))
# ---------------------------------------------------------------------------------
# Collate function for DataLoader
# ---------------------------------------------------------------------------------
def sft_collate_fn(batch):
"""
Collate a list of examples by padding them to the maximum sequence length in the batch.
"""
max_len = max(x["input_ids"].size(0) for x in batch)
input_ids_batch = []
labels_batch = []
prompt_lens = []
pad_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
for ex in batch:
input_ids = ex["input_ids"]
labels = ex["labels"]
pad_len = max_len - input_ids.size(0)
input_ids_padded = torch.cat([input_ids, torch.full((pad_len,), pad_id, dtype=input_ids.dtype)])
labels_padded = torch.cat([labels, torch.full((pad_len,), -100, dtype=labels.dtype)])
input_ids_batch.append(input_ids_padded)
labels_batch.append(labels_padded)
prompt_lens.append(ex["prompt_len"])
return {"input_ids": torch.stack(input_ids_batch), "labels": torch.stack(labels_batch), "prompt_len": prompt_lens}
def cycle(loader):
while True:
yield from loader
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=sft_collate_fn))
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, collate_fn=sft_collate_fn))
# ---------------------------------------------------------------------------------
# Setup optimizer
# ---------------------------------------------------------------------------------
optim = StableAdamWUnfused(model.parameters(), lr=LEARNING_RATE)
# ---------------------------------------------------------------------------------
# Training loop for SFT fine tuning.
#
# For Hugging Face causal LM models, supplying 'labels' automatically shifts inputs
# and computes the loss only on the unmasked portion (i.e. the answer tokens).
# ---------------------------------------------------------------------------------
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
model.train()
total_loss = 0.0
for _ in range(GRADIENT_ACCUMULATE_EVERY):
batch = next(train_loader)
input_ids = batch["input_ids"].to(device)
labels = batch["labels"].to(device)
outputs = model(input_ids=input_ids, labels=labels)
loss = outputs.loss
loss.backward()
total_loss += loss.item()
print(f"training loss: {total_loss / GRADIENT_ACCUMULATE_EVERY}")
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()
if i % VALIDATE_EVERY == 0:
model.eval()
with torch.no_grad():
batch = next(val_loader)
input_ids = batch["input_ids"].to(device)
labels = batch["labels"].to(device)
outputs = model(input_ids=input_ids, labels=labels)
val_loss = outputs.loss
print(f"validation loss: {val_loss.item()}")
if i % GENERATE_EVERY == 5:
model.eval()
# For generation, pick a random validation sample and extract its prompt.
sample = random.choice(val_dataset)
prompt_len = sample["prompt_len"]
if prompt_len == 0:
continue
prime_ids = sample["input_ids"][:prompt_len].unsqueeze(0).to(device)
prime_text = tokenizer.decode(prime_ids[0], skip_special_tokens=True)
print(f"Prompt:\n{prime_text}\n{'*' * 100}")
generated_ids = model.generate(
input_ids=prime_ids,
max_new_tokens=GENERATE_LENGTH,
do_sample=True,
temperature=1.0
)
output_str = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(f"Generated output:\n{output_str}")
# ---------------------------------------------------------------------------------
# Save the final fine-tuned model after training.
# ---------------------------------------------------------------------------------
output_checkpoint = "finetuned-bitnet.pt"
torch.save(model.state_dict(), output_checkpoint)
model.save_pretrained(hf_save_dir)
tokenizer.save_pretrained(hf_save_dir)
print(f"Model saved to '{output_checkpoint}' and Hugging Face artifacts saved to '{hf_save_dir}'!")
'''
# Build the Gradio interface with two tabs: one for instructions and one for the script.
with gr.Blocks() as demo:
gr.Markdown("# Bitnet SFT Training Script Viewer & Tutorial")
gr.Markdown("This app shows you Bifrost's SFT training script along with detailed instructions on how to run it locally or on a GPU space.")
with gr.Tabs():
with gr.TabItem("Instructions"):
gr.Markdown(instructions)
with gr.TabItem("SFT Training Script"):
gr.Textbox(value=sft_training_script, label="SFT Training Script", lines=40)
demo.launch() |