Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -1,4 +1,41 @@ 
     | 
|
| 1 | 
         
            -
            import  
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 2 | 
         
             
            import sys
         
     | 
| 3 | 
         
             
            import json
         
     | 
| 4 | 
         
             
            import logging
         
     | 
| 
         @@ -12,15 +49,21 @@ from torch.utils.data import DataLoader, Dataset 
     | 
|
| 12 | 
         
             
            import transformers
         
     | 
| 13 | 
         
             
            from transformers import AutoModelForCausalLM, AutoTokenizer
         
     | 
| 14 | 
         
             
            from zeta.optim import StableAdamWUnfused
         
     | 
| 15 | 
         
            -
            import  
     | 
| 16 | 
         
            -
            import  
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
            os.system("pip install git+https://github.com/shumingma/transformers.git")
         
     | 
| 19 | 
         
            -
            os.system("pip install zetascale==2.8.0")
         
     | 
| 20 | 
         
             
            # Suppress TorchDynamo errors (this will fallback to eager mode)
         
     | 
| 21 | 
         
             
            import torch._dynamo
         
     | 
| 22 | 
         
             
            torch._dynamo.config.suppress_errors = True
         
     | 
| 23 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 24 | 
         
             
            ##################
         
     | 
| 25 | 
         
             
            # Data Processing
         
     | 
| 26 | 
         
             
            ##################
         
     | 
| 
         @@ -61,24 +104,25 @@ transformers.utils.logging.enable_explicit_format() 
     | 
|
| 61 | 
         
             
            # Load Hugging Face model and tokenizer
         
     | 
| 62 | 
         
             
            # ---------------------------------------------------------------------------------
         
     | 
| 63 | 
         
             
            model_id = "microsoft/bitnet-b1.58-2B-4T-bf16"
         
     | 
| 64 | 
         
            -
            tokenizer = AutoTokenizer.from_pretrained(model_id)
         
     | 
| 65 | 
         
            -
            hf_save_dir = "./bitnet"
         
     | 
| 66 | 
         
             
            model = AutoModelForCausalLM.from_pretrained(
         
     | 
| 67 | 
         
             
                model_id,
         
     | 
| 68 | 
         
            -
                torch_dtype=torch. 
     | 
| 69 | 
         
            -
                device_map="auto"
         
     | 
| 70 | 
         
             
            )
         
     | 
| 71 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 72 | 
         
             
            if torch.cuda.is_available():
         
     | 
| 73 | 
         
             
                print("CUDA is available. Using GPU:", torch.cuda.get_device_name(0))
         
     | 
| 74 | 
         
             
            else:
         
     | 
| 75 | 
         
             
                print("CUDA not available; using CPU.")
         
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
             
            print(f"Loaded pre-trained Hugging Face model '{model_id}'.")
         
     | 
| 78 | 
         | 
| 79 | 
         
             
            # ---------------------------------------------------------------------------------
         
     | 
| 80 | 
         
             
            # Load new Hugging Face dataset and preprocess it using the new formatting_func
         
     | 
| 81 | 
         
             
            # ---------------------------------------------------------------------------------
         
     | 
| 
         | 
|
| 82 | 
         
             
            full_dataset = load_dataset("Bifrost-AI/Solana-blockchain-360-Coding", split="train")
         
     | 
| 83 | 
         | 
| 84 | 
         
             
            def preprocess_function(example):
         
     | 
| 
         @@ -101,7 +145,7 @@ def preprocess_function(example): 
     | 
|
| 101 | 
         | 
| 102 | 
         
             
                input_ids = tokenized_full["input_ids"]
         
     | 
| 103 | 
         
             
                labels = input_ids.copy()
         
     | 
| 104 | 
         
            -
                # Mask  
     | 
| 105 | 
         
             
                for i in range(prompt_len):
         
     | 
| 106 | 
         
             
                    labels[i] = -100
         
     | 
| 107 | 
         | 
| 
         @@ -113,6 +157,8 @@ def preprocess_function(example): 
     | 
|
| 113 | 
         | 
| 114 | 
         
             
            # Apply preprocessing and remove the original columns.
         
     | 
| 115 | 
         
             
            processed_dataset = full_dataset.map(preprocess_function, remove_columns=full_dataset.column_names)
         
     | 
| 
         | 
|
| 
         | 
|
| 116 | 
         
             
            processed_dataset.set_format(type="torch", columns=["input_ids", "labels", "prompt_len"])
         
     | 
| 117 | 
         | 
| 118 | 
         
             
            # Split the processed dataset into train and validation sets (90/10 split).
         
     | 
| 
         @@ -156,71 +202,78 @@ val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, 
     | 
|
| 156 | 
         
             
            optim = StableAdamWUnfused(model.parameters(), lr=LEARNING_RATE)
         
     | 
| 157 | 
         | 
| 158 | 
         
             
            # ---------------------------------------------------------------------------------
         
     | 
| 159 | 
         
            -
            #  
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 160 | 
         
             
            # ---------------------------------------------------------------------------------
         
     | 
| 161 | 
         
            -
             
     | 
| 162 | 
         
            -
            def train_model():
         
     | 
| 163 | 
         
            -
                """
         
     | 
| 164 | 
         
            -
                Runs a training loop for a fixed number of batches and returns training logs.
         
     | 
| 165 | 
         
            -
                """
         
     | 
| 166 | 
         
             
                model.train()
         
     | 
| 167 | 
         
            -
                 
     | 
| 168 | 
         
            -
                for  
     | 
| 169 | 
         
            -
                     
     | 
| 170 | 
         
            -
                     
     | 
| 171 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 172 | 
         
             
                        input_ids = batch["input_ids"].to(device)
         
     | 
| 173 | 
         
             
                        labels = batch["labels"].to(device)
         
     | 
| 174 | 
         
            -
                        
         
     | 
| 175 | 
         
             
                        outputs = model(input_ids=input_ids, labels=labels)
         
     | 
| 176 | 
         
            -
                         
     | 
| 177 | 
         
            -
                        loss. 
     | 
| 178 | 
         
            -
             
     | 
| 179 | 
         
            -
             
     | 
| 180 | 
         
            -
                     
     | 
| 181 | 
         
            -
                     
     | 
| 182 | 
         
            -
                     
     | 
| 183 | 
         
            -
                     
     | 
| 184 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 185 | 
         | 
| 186 | 
         
             
            # ---------------------------------------------------------------------------------
         
     | 
| 187 | 
         
            -
            #  
     | 
| 188 | 
         
             
            # ---------------------------------------------------------------------------------
         
     | 
| 189 | 
         
            -
             
     | 
| 190 | 
         
            -
             
     | 
| 191 | 
         
            -
             
     | 
| 192 | 
         
            -
             
     | 
| 193 | 
         
            -
             
     | 
| 194 | 
         
            -
             
     | 
| 195 | 
         
            -
                if not prompt.strip().startswith("### Question:"):
         
     | 
| 196 | 
         
            -
                    prompt = "### Question: " + prompt.strip() + "\n ### Answer:"
         
     | 
| 197 | 
         
            -
                tokenized_input = tokenizer(prompt, return_tensors="pt").to(device)
         
     | 
| 198 | 
         
            -
                generated_ids = model.generate(
         
     | 
| 199 | 
         
            -
                    input_ids=tokenized_input["input_ids"],
         
     | 
| 200 | 
         
            -
                    max_new_tokens=GENERATE_LENGTH,
         
     | 
| 201 | 
         
            -
                    do_sample=True,
         
     | 
| 202 | 
         
            -
                    temperature=1.0
         
     | 
| 203 | 
         
            -
                )
         
     | 
| 204 | 
         
            -
                generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
         
     | 
| 205 | 
         
            -
                return generated_text
         
     | 
| 206 | 
         | 
| 207 | 
         
            -
            #  
     | 
| 208 | 
         
            -
            # Gradio UI Setup for Auto-Trainer App
         
     | 
| 209 | 
         
            -
            # ---------------------------------------------------------------------------------
         
     | 
| 210 | 
         
             
            with gr.Blocks() as demo:
         
     | 
| 211 | 
         
            -
                gr.Markdown(" 
     | 
| 212 | 
         
            -
                gr.Markdown("This app  
     | 
| 213 | 
         | 
| 214 | 
         
            -
                with gr. 
     | 
| 215 | 
         
            -
                     
     | 
| 216 | 
         
            -
             
     | 
| 217 | 
         
            -
                     
     | 
| 218 | 
         
            -
             
     | 
| 219 | 
         
            -
             
     | 
| 220 | 
         
            -
             
     | 
| 221 | 
         
            -
                    generate_button = gr.Button("Generate Answer")
         
     | 
| 222 | 
         
            -
                    generation_output = gr.Textbox(label="Generated Output", lines=10)
         
     | 
| 223 | 
         
            -
                    generate_button.click(fn=generate_text_from_prompt, inputs=instruction_input, outputs=generation_output)
         
     | 
| 224 | 
         
            -
             
     | 
| 225 | 
         
            -
            if __name__ == "__main__":
         
     | 
| 226 | 
         
            -
                demo.launch()
         
     | 
| 
         | 
|
| 1 | 
         
            +
            import gradio as gr
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            # Markdown text with instructions for running the script locally.
         
     | 
| 4 | 
         
            +
            instructions = """
         
     | 
| 5 | 
         
            +
            # How to Run the SFT Training Script Locally
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            This Space shows you how to run the SFT fine-tuning training script on your own machine.
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            ## Instructions:
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            1. **Clone or Copy the Repository:**  
         
     | 
| 12 | 
         
            +
               Make sure you have the repository containing the SFT training script. You can clone it or download the code.
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            2. **Install Dependencies:**  
         
     | 
| 15 | 
         
            +
               Ensure you have Python 3.10 or above. Install the required packages by running:
         
     | 
| 16 | 
         
            +
               ```
         
     | 
| 17 | 
         
            +
               pip install -r requirements.txt
         
     | 
| 18 | 
         
            +
               ```
         
     | 
| 19 | 
         
            +
               Your `requirements.txt` should include all necessary packages and install your custom GitHub fork of `transformers` last.
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            3. **Review or Edit the Training Script:**  
         
     | 
| 22 | 
         
            +
               Open the `finetune_sft_training.py` file (or whichever file contains the SFT training script) to review the code and adjust hyperparameters, file paths, or other settings as needed.
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            4. **Run the Script Locally:**  
         
     | 
| 25 | 
         
            +
               From the terminal, execute:
         
     | 
| 26 | 
         
            +
               ```
         
     | 
| 27 | 
         
            +
               python finetune_sft_training.py
         
     | 
| 28 | 
         
            +
               ```
         
     | 
| 29 | 
         
            +
               This will start the fine-tuning process. Check your terminal for training loss logs and progress messages.
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            5. **Troubleshooting Tips:**  
         
     | 
| 32 | 
         
            +
               - If you’re running on a CPU-only machine, ensure the model is loaded in `torch.float32` instead of `torch.bfloat16`.
         
     | 
| 33 | 
         
            +
               - Verify that your dataset paths and configurations match your local environment.
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            Enjoy fine-tuning your model locally!
         
     | 
| 36 | 
         
            +
            """
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            sft_training_script = r'''import os
         
     | 
| 39 | 
         
             
            import sys
         
     | 
| 40 | 
         
             
            import json
         
     | 
| 41 | 
         
             
            import logging
         
     | 
| 
         | 
|
| 49 | 
         
             
            import transformers
         
     | 
| 50 | 
         
             
            from transformers import AutoModelForCausalLM, AutoTokenizer
         
     | 
| 51 | 
         
             
            from zeta.optim import StableAdamWUnfused
         
     | 
| 52 | 
         
            +
            import pkg_resources
         
     | 
| 53 | 
         
            +
            import sys
         
     | 
| 54 | 
         
            +
             
     | 
| 
         | 
|
| 
         | 
|
| 55 | 
         
             
            # Suppress TorchDynamo errors (this will fallback to eager mode)
         
     | 
| 56 | 
         
             
            import torch._dynamo
         
     | 
| 57 | 
         
             
            torch._dynamo.config.suppress_errors = True
         
     | 
| 58 | 
         | 
| 59 | 
         
            +
            print("Installed Packages:")
         
     | 
| 60 | 
         
            +
            for dist in pkg_resources.working_set:
         
     | 
| 61 | 
         
            +
                print(f"{dist.project_name}=={dist.version}")
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
            print("Currently imported modules:")
         
     | 
| 64 | 
         
            +
            for module_name in sys.modules.keys():
         
     | 
| 65 | 
         
            +
                print(module_name)
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
             
            ##################
         
     | 
| 68 | 
         
             
            # Data Processing
         
     | 
| 69 | 
         
             
            ##################
         
     | 
| 
         | 
|
| 104 | 
         
             
            # Load Hugging Face model and tokenizer
         
     | 
| 105 | 
         
             
            # ---------------------------------------------------------------------------------
         
     | 
| 106 | 
         
             
            model_id = "microsoft/bitnet-b1.58-2B-4T-bf16"
         
     | 
| 107 | 
         
            +
            tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
         
     | 
| 
         | 
|
| 108 | 
         
             
            model = AutoModelForCausalLM.from_pretrained(
         
     | 
| 109 | 
         
             
                model_id,
         
     | 
| 110 | 
         
            +
                torch_dtype=torch.bfloat16
         
     | 
| 
         | 
|
| 111 | 
         
             
            )
         
     | 
| 112 | 
         
            +
            hf_save_dir = "./bitnet"
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
         
     | 
| 115 | 
         
             
            if torch.cuda.is_available():
         
     | 
| 116 | 
         
             
                print("CUDA is available. Using GPU:", torch.cuda.get_device_name(0))
         
     | 
| 117 | 
         
             
            else:
         
     | 
| 118 | 
         
             
                print("CUDA not available; using CPU.")
         
     | 
| 119 | 
         
            +
            model.to(device)
         
     | 
| 120 | 
         
             
            print(f"Loaded pre-trained Hugging Face model '{model_id}'.")
         
     | 
| 121 | 
         | 
| 122 | 
         
             
            # ---------------------------------------------------------------------------------
         
     | 
| 123 | 
         
             
            # Load new Hugging Face dataset and preprocess it using the new formatting_func
         
     | 
| 124 | 
         
             
            # ---------------------------------------------------------------------------------
         
     | 
| 125 | 
         
            +
            # Load the dataset from Hugging Face
         
     | 
| 126 | 
         
             
            full_dataset = load_dataset("Bifrost-AI/Solana-blockchain-360-Coding", split="train")
         
     | 
| 127 | 
         | 
| 128 | 
         
             
            def preprocess_function(example):
         
     | 
| 
         | 
|
| 145 | 
         | 
| 146 | 
         
             
                input_ids = tokenized_full["input_ids"]
         
     | 
| 147 | 
         
             
                labels = input_ids.copy()
         
     | 
| 148 | 
         
            +
                # Mask the prompt tokens (loss computed only on answer tokens)
         
     | 
| 149 | 
         
             
                for i in range(prompt_len):
         
     | 
| 150 | 
         
             
                    labels[i] = -100
         
     | 
| 151 | 
         | 
| 
         | 
|
| 157 | 
         | 
| 158 | 
         
             
            # Apply preprocessing and remove the original columns.
         
     | 
| 159 | 
         
             
            processed_dataset = full_dataset.map(preprocess_function, remove_columns=full_dataset.column_names)
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
            # Set the format so that when the dataset is indexed, the fields are torch tensors.
         
     | 
| 162 | 
         
             
            processed_dataset.set_format(type="torch", columns=["input_ids", "labels", "prompt_len"])
         
     | 
| 163 | 
         | 
| 164 | 
         
             
            # Split the processed dataset into train and validation sets (90/10 split).
         
     | 
| 
         | 
|
| 202 | 
         
             
            optim = StableAdamWUnfused(model.parameters(), lr=LEARNING_RATE)
         
     | 
| 203 | 
         | 
| 204 | 
         
             
            # ---------------------------------------------------------------------------------
         
     | 
| 205 | 
         
            +
            # Training loop for SFT fine tuning.
         
     | 
| 206 | 
         
            +
            #
         
     | 
| 207 | 
         
            +
            # For Hugging Face causal LM models, supplying 'labels' automatically shifts inputs
         
     | 
| 208 | 
         
            +
            # and computes the loss only on the unmasked portion (i.e. the answer tokens).
         
     | 
| 209 | 
         
             
            # ---------------------------------------------------------------------------------
         
     | 
| 210 | 
         
            +
            for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 211 | 
         
             
                model.train()
         
     | 
| 212 | 
         
            +
                total_loss = 0.0
         
     | 
| 213 | 
         
            +
                for _ in range(GRADIENT_ACCUMULATE_EVERY):
         
     | 
| 214 | 
         
            +
                    batch = next(train_loader)
         
     | 
| 215 | 
         
            +
                    input_ids = batch["input_ids"].to(device)
         
     | 
| 216 | 
         
            +
                    labels = batch["labels"].to(device)
         
     | 
| 217 | 
         
            +
                    
         
     | 
| 218 | 
         
            +
                    outputs = model(input_ids=input_ids, labels=labels)
         
     | 
| 219 | 
         
            +
                    loss = outputs.loss
         
     | 
| 220 | 
         
            +
                    loss.backward()
         
     | 
| 221 | 
         
            +
                    total_loss += loss.item()
         
     | 
| 222 | 
         
            +
                
         
     | 
| 223 | 
         
            +
                print(f"training loss: {total_loss / GRADIENT_ACCUMULATE_EVERY}")
         
     | 
| 224 | 
         
            +
                torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
         
     | 
| 225 | 
         
            +
                optim.step()
         
     | 
| 226 | 
         
            +
                optim.zero_grad()
         
     | 
| 227 | 
         
            +
                
         
     | 
| 228 | 
         
            +
                if i % VALIDATE_EVERY == 0:
         
     | 
| 229 | 
         
            +
                    model.eval()
         
     | 
| 230 | 
         
            +
                    with torch.no_grad():
         
     | 
| 231 | 
         
            +
                        batch = next(val_loader)
         
     | 
| 232 | 
         
             
                        input_ids = batch["input_ids"].to(device)
         
     | 
| 233 | 
         
             
                        labels = batch["labels"].to(device)
         
     | 
| 
         | 
|
| 234 | 
         
             
                        outputs = model(input_ids=input_ids, labels=labels)
         
     | 
| 235 | 
         
            +
                        val_loss = outputs.loss
         
     | 
| 236 | 
         
            +
                        print(f"validation loss: {val_loss.item()}")
         
     | 
| 237 | 
         
            +
                
         
     | 
| 238 | 
         
            +
                if i % GENERATE_EVERY == 5:
         
     | 
| 239 | 
         
            +
                    model.eval()
         
     | 
| 240 | 
         
            +
                    # For generation, pick a random validation sample and extract its prompt.
         
     | 
| 241 | 
         
            +
                    sample = random.choice(val_dataset)
         
     | 
| 242 | 
         
            +
                    prompt_len = sample["prompt_len"]
         
     | 
| 243 | 
         
            +
                    if prompt_len == 0:
         
     | 
| 244 | 
         
            +
                        continue
         
     | 
| 245 | 
         
            +
                    prime_ids = sample["input_ids"][:prompt_len].unsqueeze(0).to(device)
         
     | 
| 246 | 
         
            +
                    prime_text = tokenizer.decode(prime_ids[0], skip_special_tokens=True)
         
     | 
| 247 | 
         
            +
                    print(f"Prompt:\n{prime_text}\n{'*' * 100}")
         
     | 
| 248 | 
         
            +
                    
         
     | 
| 249 | 
         
            +
                    generated_ids = model.generate(
         
     | 
| 250 | 
         
            +
                        input_ids=prime_ids,
         
     | 
| 251 | 
         
            +
                        max_new_tokens=GENERATE_LENGTH,
         
     | 
| 252 | 
         
            +
                        do_sample=True,
         
     | 
| 253 | 
         
            +
                        temperature=1.0
         
     | 
| 254 | 
         
            +
                    )
         
     | 
| 255 | 
         
            +
                    output_str = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
         
     | 
| 256 | 
         
            +
                    print(f"Generated output:\n{output_str}")
         
     | 
| 257 | 
         | 
| 258 | 
         
             
            # ---------------------------------------------------------------------------------
         
     | 
| 259 | 
         
            +
            # Save the final fine-tuned model after training.
         
     | 
| 260 | 
         
             
            # ---------------------------------------------------------------------------------
         
     | 
| 261 | 
         
            +
            output_checkpoint = "finetuned-bitnet.pt"
         
     | 
| 262 | 
         
            +
            torch.save(model.state_dict(), output_checkpoint)
         
     | 
| 263 | 
         
            +
            model.save_pretrained(hf_save_dir)
         
     | 
| 264 | 
         
            +
            tokenizer.save_pretrained(hf_save_dir)
         
     | 
| 265 | 
         
            +
            print(f"Model saved to '{output_checkpoint}' and Hugging Face artifacts saved to '{hf_save_dir}'!")
         
     | 
| 266 | 
         
            +
            '''
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 267 | 
         | 
| 268 | 
         
            +
            # Build the Gradio interface with two tabs: one for instructions and one for the script.
         
     | 
| 
         | 
|
| 
         | 
|
| 269 | 
         
             
            with gr.Blocks() as demo:
         
     | 
| 270 | 
         
            +
                gr.Markdown("# Local SFT Training Script Viewer")
         
     | 
| 271 | 
         
            +
                gr.Markdown("This app shows you the SFT training script along with detailed instructions on how to run it locally.")
         
     | 
| 272 | 
         | 
| 273 | 
         
            +
                with gr.Tabs():
         
     | 
| 274 | 
         
            +
                    with gr.TabItem("Instructions"):
         
     | 
| 275 | 
         
            +
                        gr.Markdown(instructions)
         
     | 
| 276 | 
         
            +
                    with gr.TabItem("SFT Training Script"):
         
     | 
| 277 | 
         
            +
                        gr.Textbox(value=sft_training_script, label="SFT Training Script", lines=40)
         
     | 
| 278 | 
         
            +
                        
         
     | 
| 279 | 
         
            +
            demo.launch()
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         |