Spaces:
Running
Running
File size: 10,342 Bytes
66a4fc3 4793e9e 66a4fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
# ANAL脥TICA BOUTIQUE, SC (https://www.visoresanalitica.com.mx/)
# DEMO
#
# PROBLEM:
# Multi-agent Collaboration for Financial Analysis
# Demostrate ways for making agents collaborate with each other.
#
# python app.py
# Dependencies:
import gradio as gr
from crewai import Agent, Task, Crew, Process
from langchain_openai import ChatOpenAI
#from langchain_community.chat_message_histories import GradioChatMessageHistory
from langchain_community.chat_message_histories.in_memory import ChatMessageHistory
import os
import sys
import io
import pandas as pd
from crewai_tools import SerperDevTool, ScrapeWebsiteTool
#from scrape_website_tool import ScrapeWebsiteTool
#from serper_dev_tool import SerperDevTool
#
# Obtener las API keys desde .env
openai_api_key = os.getenv("OPENAI_API_KEY")
serper_api_key = os.getenv("SERPER_API_KEY")
# Obtener las API keys desde SECRETS
#openai_api_key = st.secrets["OPENAI_API_KEY"]
#serper_api_key = st.secrets["SERPER_API_KEY"]
# Define the list of models and initialize your agents and tasks as per the earlier code
MODEL_LIST = ['gpt-4o-mini', 'gpt-4o']
# crewAI Tools
search_tool = SerperDevTool()
scrape_tool = ScrapeWebsiteTool()
# Define Gradio interface components
def execute_financial_analysis( stock_selection, model_option, initial_capital, risk_tolerance, trading_strategy_preference ):
sys.stdout = io.StringIO() # Capture output to display in the interface
# Setup the environment based on model selection
os.environ["OPENAI_MODEL_NAME"] = model_option
# Creating Agents
# Agent: Data Analyst
data_analyst_agent = Agent(
role="Data Analyst",
goal="Monitor and analyze market data in real-time "
"to identify trends and predict market movements.",
backstory="Specializing in financial markets, this agent "
"uses statistical modeling and machine learning "
"to provide crucial insights. With a knack for data, "
"the Data Analyst Agent is the cornerstone for "
"informing trading decisions.",
verbose=True,
allow_delegation=True,
tools = [scrape_tool, search_tool]
)
# Agent: Trading Strategy Developer
trading_strategy_agent = Agent(
role="Trading Strategy Developer",
goal="Develop and test various trading strategies based "
"on insights from the Data Analyst Agent.",
backstory="Equipped with a deep understanding of financial "
"markets and quantitative analysis, this agent "
"devises and refines trading strategies. It evaluates "
"the performance of different approaches to determine "
"the most profitable and risk-averse options.",
verbose=True,
allow_delegation=True,
tools = [scrape_tool, search_tool]
)
# Agent: Trade Advisor
execution_agent = Agent(
role="Trade Advisor",
goal="Suggest optimal trade execution strategies "
"based on approved trading strategies.",
backstory="This agent specializes in analyzing the timing, price, "
"and logistical details of potential trades. By evaluating "
"these factors, it provides well-founded suggestions for "
"when and how trades should be executed to maximize "
"efficiency and adherence to strategy.",
verbose=True,
allow_delegation=True,
tools = [scrape_tool, search_tool]
)
# Agent: Risk Advisor
risk_management_agent = Agent(
role="Risk Advisor",
goal="Evaluate and provide insights on the risks "
"associated with potential trading activities.",
backstory="Armed with a deep understanding of risk assessment models "
"and market dynamics, this agent scrutinizes the potential "
"risks of proposed trades. It offers a detailed analysis of "
"risk exposure and suggests safeguards to ensure that "
"trading activities align with the firm鈥檚 risk tolerance.",
verbose=True,
allow_delegation=True,
tools = [scrape_tool, search_tool]
)
# Creating Tasks
# Task for Data Analyst Agent: Analyze Market Data
data_analysis_task = Task(
description=(
"Continuously monitor and analyze market data for "
"the selected stock ({stock_selection}). "
"Use statistical modeling and machine learning to "
"identify trends and predict market movements."
),
expected_output=(
"Insights and alerts about significant market "
"opportunities or threats for {stock_selection}."
),
agent=data_analyst_agent,
)
# Task for Trading Strategy Agent: Develop Trading Strategies
strategy_development_task = Task(
description=(
"Develop and refine trading strategies based on "
"the insights from the Data Analyst and "
"user-defined risk tolerance ({risk_tolerance}). "
"Consider trading preferences ({trading_strategy_preference})."
),
expected_output=(
"A set of potential trading strategies for {stock_selection} "
"that align with the user's risk tolerance."
),
agent=trading_strategy_agent,
)
# Task for Trade Advisor Agent: Plan Trade Execution
execution_planning_task = Task(
description=(
"Analyze approved trading strategies to determine the "
"best execution methods for {stock_selection}, "
"considering current market conditions and optimal pricing."
),
expected_output=(
"Detailed execution plans suggesting how and when to "
"execute trades for {stock_selection}."
),
agent=execution_agent,
)
# Task for Risk Advisor Agent: Assess Trading Risks
risk_assessment_task = Task(
description=(
"Evaluate the risks associated with the proposed trading "
"strategies and execution plans for {stock_selection}. "
"Provide a detailed analysis of potential risks "
"and suggest mitigation strategies."
),
expected_output=(
"A comprehensive risk analysis report detailing potential "
"risks and mitigation recommendations for {stock_selection}."
"Provide your final answer in Spanish."
),
agent=risk_management_agent,
)
# Creating the Crew
# Note: The Process class helps to delegate the workflow to the Agents (kind of like a Manager at work)
# In this example, it will run this hierarchically.
# manager_llm lets you choose the "manager" LLM you want to use.
# Define the crew with agents and tasks
financial_trading_crew = Crew(
agents=[data_analyst_agent,
trading_strategy_agent,
execution_agent,
risk_management_agent],
tasks=[data_analysis_task,
strategy_development_task,
execution_planning_task,
risk_assessment_task],
manager_llm=ChatOpenAI(model=model_option,
temperature=0.7),
process=Process.hierarchical,
verbose=True
)
# Define your inputs
financial_trading_inputs = {
'stock_selection': stock_selection,
'initial_capital': initial_capital,
'risk_tolerance': risk_tolerance,
'trading_strategy_preference': trading_strategy_preference,
'news_impact_consideration': True
}
# Execute your Crew process
result = financial_trading_crew.kickoff(inputs=financial_trading_inputs)
verbose_output = sys.stdout.getvalue()
sys.stdout = sys.__stdout__ # Restaurar la salida est谩ndar
# Convertir el objeto 'result' a cadena para que Gradio pueda procesarlo
return str(result), verbose_output
#
#execute_financial_analysis( 'VOD', 'gpt-4o-mini', '100000', 'Medium', 'Day Trading' )
#
with gr.Blocks() as demo:
gr.Markdown("# Colaboraci贸n Multiagente para el An谩lisis Financiero")
with gr.Sidebar():
gr.Markdown("# DEMO")
gr.Image("images/Logo_AB.png")
gr.Markdown("Contact: [email protected] [email protected]")
gr.Markdown("## Configuraci贸n del Modelo")
model_option = gr.Dropdown(MODEL_LIST, label="Choose OpenAI model", value='gpt-4o-mini')
gr.Markdown("## Configuraci贸n")
gr.Markdown("""
## 馃搳 AI Agents para An谩lisis de Trading
**Este DEMO crea un sistema de agentes de inteligencia artificial (AI Agents) para analizar datos del mercado financiero y sugerir estrategias de trading para un activo.**
La tripulaci贸n de agentes incluye a:
* Data Analyst
* Trading Strategy Developer
* Trade Advisor
* Risk Advisor
Todos, con herramientas de acceso a informaci贸n en tiempo real que sea disponible en Internet.
Por favor, selecciona el **Ticker** respecto del cual quieras el an谩lisis financiero.
Algunos ejemplos son:
- VOD - Nasdaq Index
- AAPL - Apple
- GOOG - Alphabet (Google)
- INTC - Intel
- BTC-USD - Bitcoin USD
""")
ticker = gr.Textbox(label="Introduce el Ticker del activo financiero (Ej: AAPL):", value="AAPL")
initial_capital = gr.Textbox(label="Initial Capital", value="100000")
risk_tolerance = gr.Radio(label="Risk Tolerance", choices=["Low", "Medium", "High"], value="Medium")
trading_strategy_preference = gr.Radio(label="Trading Strategy Preference", choices=["Day Trading", "Swing Trading", "Long Term"], value="Day Trading")
execute_button = gr.Button("馃殌 Iniciar An谩lisis")
gr.Markdown("## 馃搶 Resultado Final")
result_display = gr.Markdown()
verbose_output = gr.Textbox(label="馃攷 Detalle del Proceso de Razonamiento", lines=10)
execute_button.click(
execute_financial_analysis,
inputs=[ticker, model_option, initial_capital, risk_tolerance, trading_strategy_preference],
outputs=[result_display, verbose_output]
)
#
demo.launch()
|