Spaces:
Running
Running
Inicial
Browse files- .DS_Store +0 -0
- app.py +259 -0
- images/Logo_AB.png +0 -0
- requirements.txt +7 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ANAL脥TICA BOUTIQUE, SC (https://www.visoresanalitica.com.mx/)
|
2 |
+
# DEMO
|
3 |
+
#
|
4 |
+
# PROBLEM:
|
5 |
+
|
6 |
+
# Multi-agent Collaboration for Financial Analysis
|
7 |
+
# Demostrate ways for making agents collaborate with each other.
|
8 |
+
#
|
9 |
+
|
10 |
+
# python app.py
|
11 |
+
|
12 |
+
# Dependencies:
|
13 |
+
import gradio as gr
|
14 |
+
from crewai import Agent, Task, Crew, Process
|
15 |
+
from langchain_openai import ChatOpenAI
|
16 |
+
#from langchain_community.chat_message_histories import GradioChatMessageHistory
|
17 |
+
from langchain_community.chat_message_histories.in_memory import ChatMessageHistory
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
import io
|
21 |
+
import pandas as pd
|
22 |
+
from crewai_tools import SerperDevTool, ScrapeWebsiteTool
|
23 |
+
#from scrape_website_tool import ScrapeWebsiteTool
|
24 |
+
#from serper_dev_tool import SerperDevTool
|
25 |
+
|
26 |
+
#
|
27 |
+
# Obtener las API keys desde .env
|
28 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
29 |
+
serper_api_key = os.getenv("SERPER_API_KEY")
|
30 |
+
|
31 |
+
# Obtener las API keys desde SECRETS
|
32 |
+
#openai_api_key = st.secrets["OPENAI_API_KEY"]
|
33 |
+
#serper_api_key = st.secrets["SERPER_API_KEY"]
|
34 |
+
|
35 |
+
# Define the list of models and initialize your agents and tasks as per the earlier code
|
36 |
+
MODEL_LIST = ['gpt-4o-mini', 'gpt-4o']
|
37 |
+
|
38 |
+
# crewAI Tools
|
39 |
+
search_tool = SerperDevTool()
|
40 |
+
scrape_tool = ScrapeWebsiteTool()
|
41 |
+
|
42 |
+
# Define Gradio interface components
|
43 |
+
def execute_financial_analysis( stock_selection, model_option, initial_capital, risk_tolerance, trading_strategy_preference ):
|
44 |
+
sys.stdout = io.StringIO() # Capture output to display in the interface
|
45 |
+
|
46 |
+
# Setup the environment based on model selection
|
47 |
+
os.environ["OPENAI_MODEL_NAME"] = model_option
|
48 |
+
|
49 |
+
# Creating Agents
|
50 |
+
# Agent: Data Analyst
|
51 |
+
data_analyst_agent = Agent(
|
52 |
+
role="Data Analyst",
|
53 |
+
goal="Monitor and analyze market data in real-time "
|
54 |
+
"to identify trends and predict market movements.",
|
55 |
+
backstory="Specializing in financial markets, this agent "
|
56 |
+
"uses statistical modeling and machine learning "
|
57 |
+
"to provide crucial insights. With a knack for data, "
|
58 |
+
"the Data Analyst Agent is the cornerstone for "
|
59 |
+
"informing trading decisions.",
|
60 |
+
verbose=True,
|
61 |
+
allow_delegation=True,
|
62 |
+
tools = [scrape_tool, search_tool]
|
63 |
+
)
|
64 |
+
# Agent: Trading Strategy Developer
|
65 |
+
trading_strategy_agent = Agent(
|
66 |
+
role="Trading Strategy Developer",
|
67 |
+
goal="Develop and test various trading strategies based "
|
68 |
+
"on insights from the Data Analyst Agent.",
|
69 |
+
backstory="Equipped with a deep understanding of financial "
|
70 |
+
"markets and quantitative analysis, this agent "
|
71 |
+
"devises and refines trading strategies. It evaluates "
|
72 |
+
"the performance of different approaches to determine "
|
73 |
+
"the most profitable and risk-averse options.",
|
74 |
+
verbose=True,
|
75 |
+
allow_delegation=True,
|
76 |
+
tools = [scrape_tool, search_tool]
|
77 |
+
)
|
78 |
+
# Agent: Trade Advisor
|
79 |
+
execution_agent = Agent(
|
80 |
+
role="Trade Advisor",
|
81 |
+
goal="Suggest optimal trade execution strategies "
|
82 |
+
"based on approved trading strategies.",
|
83 |
+
backstory="This agent specializes in analyzing the timing, price, "
|
84 |
+
"and logistical details of potential trades. By evaluating "
|
85 |
+
"these factors, it provides well-founded suggestions for "
|
86 |
+
"when and how trades should be executed to maximize "
|
87 |
+
"efficiency and adherence to strategy.",
|
88 |
+
verbose=True,
|
89 |
+
allow_delegation=True,
|
90 |
+
tools = [scrape_tool, search_tool]
|
91 |
+
)
|
92 |
+
# Agent: Risk Advisor
|
93 |
+
risk_management_agent = Agent(
|
94 |
+
role="Risk Advisor",
|
95 |
+
goal="Evaluate and provide insights on the risks "
|
96 |
+
"associated with potential trading activities.",
|
97 |
+
backstory="Armed with a deep understanding of risk assessment models "
|
98 |
+
"and market dynamics, this agent scrutinizes the potential "
|
99 |
+
"risks of proposed trades. It offers a detailed analysis of "
|
100 |
+
"risk exposure and suggests safeguards to ensure that "
|
101 |
+
"trading activities align with the firm鈥檚 risk tolerance.",
|
102 |
+
verbose=True,
|
103 |
+
allow_delegation=True,
|
104 |
+
tools = [scrape_tool, search_tool]
|
105 |
+
)
|
106 |
+
|
107 |
+
# Creating Tasks
|
108 |
+
# Task for Data Analyst Agent: Analyze Market Data
|
109 |
+
data_analysis_task = Task(
|
110 |
+
description=(
|
111 |
+
"Continuously monitor and analyze market data for "
|
112 |
+
"the selected stock ({stock_selection}). "
|
113 |
+
"Use statistical modeling and machine learning to "
|
114 |
+
"identify trends and predict market movements."
|
115 |
+
),
|
116 |
+
expected_output=(
|
117 |
+
"Insights and alerts about significant market "
|
118 |
+
"opportunities or threats for {stock_selection}."
|
119 |
+
),
|
120 |
+
agent=data_analyst_agent,
|
121 |
+
)
|
122 |
+
|
123 |
+
# Task for Trading Strategy Agent: Develop Trading Strategies
|
124 |
+
strategy_development_task = Task(
|
125 |
+
description=(
|
126 |
+
"Develop and refine trading strategies based on "
|
127 |
+
"the insights from the Data Analyst and "
|
128 |
+
"user-defined risk tolerance ({risk_tolerance}). "
|
129 |
+
"Consider trading preferences ({trading_strategy_preference})."
|
130 |
+
),
|
131 |
+
expected_output=(
|
132 |
+
"A set of potential trading strategies for {stock_selection} "
|
133 |
+
"that align with the user's risk tolerance."
|
134 |
+
),
|
135 |
+
agent=trading_strategy_agent,
|
136 |
+
)
|
137 |
+
|
138 |
+
# Task for Trade Advisor Agent: Plan Trade Execution
|
139 |
+
execution_planning_task = Task(
|
140 |
+
description=(
|
141 |
+
"Analyze approved trading strategies to determine the "
|
142 |
+
"best execution methods for {stock_selection}, "
|
143 |
+
"considering current market conditions and optimal pricing."
|
144 |
+
),
|
145 |
+
expected_output=(
|
146 |
+
"Detailed execution plans suggesting how and when to "
|
147 |
+
"execute trades for {stock_selection}."
|
148 |
+
),
|
149 |
+
agent=execution_agent,
|
150 |
+
)
|
151 |
+
|
152 |
+
# Task for Risk Advisor Agent: Assess Trading Risks
|
153 |
+
risk_assessment_task = Task(
|
154 |
+
description=(
|
155 |
+
"Evaluate the risks associated with the proposed trading "
|
156 |
+
"strategies and execution plans for {stock_selection}. "
|
157 |
+
"Provide a detailed analysis of potential risks "
|
158 |
+
"and suggest mitigation strategies."
|
159 |
+
),
|
160 |
+
expected_output=(
|
161 |
+
"A comprehensive risk analysis report detailing potential "
|
162 |
+
"risks and mitigation recommendations for {stock_selection}."
|
163 |
+
"Provide your final answer in Spanish."
|
164 |
+
),
|
165 |
+
agent=risk_management_agent,
|
166 |
+
)
|
167 |
+
|
168 |
+
# Creating the Crew
|
169 |
+
# Note: The Process class helps to delegate the workflow to the Agents (kind of like a Manager at work)
|
170 |
+
# In this example, it will run this hierarchically.
|
171 |
+
# manager_llm lets you choose the "manager" LLM you want to use.
|
172 |
+
|
173 |
+
# Define the crew with agents and tasks
|
174 |
+
financial_trading_crew = Crew(
|
175 |
+
agents=[data_analyst_agent,
|
176 |
+
trading_strategy_agent,
|
177 |
+
execution_agent,
|
178 |
+
risk_management_agent],
|
179 |
+
|
180 |
+
tasks=[data_analysis_task,
|
181 |
+
strategy_development_task,
|
182 |
+
execution_planning_task,
|
183 |
+
risk_assessment_task],
|
184 |
+
|
185 |
+
manager_llm=ChatOpenAI(model=model_option,
|
186 |
+
temperature=0.7),
|
187 |
+
process=Process.hierarchical,
|
188 |
+
verbose=True
|
189 |
+
)
|
190 |
+
|
191 |
+
# Define your inputs
|
192 |
+
financial_trading_inputs = {
|
193 |
+
'stock_selection': stock_selection,
|
194 |
+
'initial_capital': initial_capital,
|
195 |
+
'risk_tolerance': risk_tolerance,
|
196 |
+
'trading_strategy_preference': trading_strategy_preference,
|
197 |
+
'news_impact_consideration': True
|
198 |
+
}
|
199 |
+
|
200 |
+
# Execute your Crew process
|
201 |
+
result = financial_trading_crew.kickoff(inputs=financial_trading_inputs)
|
202 |
+
verbose_output = sys.stdout.getvalue()
|
203 |
+
sys.stdout = sys.__stdout__ # Restaurar la salida est谩ndar
|
204 |
+
|
205 |
+
# Convertir el objeto 'result' a cadena para que Gradio pueda procesarlo
|
206 |
+
return str(result), verbose_output
|
207 |
+
|
208 |
+
#
|
209 |
+
#execute_financial_analysis( 'VOD', 'gpt-4o-mini', '100000', 'Medium', 'Day Trading' )
|
210 |
+
|
211 |
+
#
|
212 |
+
with gr.Blocks() as demo:
|
213 |
+
gr.Markdown("# Colaboraci贸n Multiagente para el An谩lisis Financiero")
|
214 |
+
with gr.Sidebar():
|
215 |
+
gr.Markdown("# DEMO")
|
216 |
+
gr.Image("images/Logo_AB.png")
|
217 |
+
gr.Markdown("Contact: [email protected] [email protected] [email protected]")
|
218 |
+
gr.Markdown("## Configuraci贸n del Modelo")
|
219 |
+
model_option = gr.Dropdown(MODEL_LIST, label="Choose OpenAI model", value='gpt-4o-mini')
|
220 |
+
|
221 |
+
gr.Markdown("## Configuraci贸n")
|
222 |
+
gr.Markdown("""
|
223 |
+
## 馃搳 AI Agents para An谩lisis de Trading
|
224 |
+
|
225 |
+
**Este DEMO crea un sistema de agentes de inteligencia artificial (AI Agents) para analizar datos del mercado financiero y sugerir estrategias de trading para un activo.**
|
226 |
+
La tripulaci贸n de agentes incluye a:
|
227 |
+
* Data Analyst
|
228 |
+
* Trading Strategy Developer
|
229 |
+
* Trade Advisor
|
230 |
+
* Risk Advisor
|
231 |
+
|
232 |
+
Todos, con herramientas de acceso a informaci贸n en tiempo real que sea disponible en Internet.
|
233 |
+
Por favor, selecciona el **Ticker** respecto del cual quieras el an谩lisis financiero.
|
234 |
+
|
235 |
+
Algunos ejemplos son:
|
236 |
+
- VOD - Nasdaq Index
|
237 |
+
- AAPL - Apple
|
238 |
+
- GOOG - Alphabet (Google)
|
239 |
+
- INTC - Intel
|
240 |
+
- BTC-USD - Bitcoin USD
|
241 |
+
""")
|
242 |
+
ticker = gr.Textbox(label="Introduce el Ticker del activo financiero (Ej: AAPL):", value="AAPL")
|
243 |
+
initial_capital = gr.Textbox(label="Initial Capital", value="100000")
|
244 |
+
risk_tolerance = gr.Radio(label="Risk Tolerance", choices=["Low", "Medium", "High"], value="Medium")
|
245 |
+
trading_strategy_preference = gr.Radio(label="Trading Strategy Preference", choices=["Day Trading", "Swing Trading", "Long Term"], value="Day Trading")
|
246 |
+
execute_button = gr.Button("馃殌 Iniciar An谩lisis")
|
247 |
+
|
248 |
+
gr.Markdown("## 馃搶 Resultado Final")
|
249 |
+
result_display = gr.Markdown()
|
250 |
+
verbose_output = gr.Textbox(label="馃攷 Detalle del Proceso de Razonamiento", lines=10)
|
251 |
+
|
252 |
+
execute_button.click(
|
253 |
+
execute_financial_analysis,
|
254 |
+
inputs=[ticker, model_option, initial_capital, risk_tolerance, trading_strategy_preference],
|
255 |
+
outputs=[result_display, verbose_output]
|
256 |
+
)
|
257 |
+
#
|
258 |
+
demo.launch()
|
259 |
+
|
images/Logo_AB.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
gradio
|
3 |
+
crewai
|
4 |
+
crewai_tools
|
5 |
+
langchain_openai
|
6 |
+
langchain_community
|
7 |
+
|