Azaya89's picture
small update until new panel release. See #8174 in Panel
627be83
# =============================
# Imports & Extensions
# =============================
import pandas as pd
import hvplot.pandas # noqa
import panel as pn
import holoviews as hv
import panel_material_ui as pmu
import fastparquet # noqa
pn.extension("tabulator", autoreload=True)
# =============================
# Constants & Theme Config
# =============================
HEADER_COLOR = "#4199DA"
PAPER_COLOR = "#f5f4ef"
INDICATOR_COLOR = "#221cd9"
# =============================
# Data Loading
# =============================
data_url = (
"https://raw.githubusercontent.com/Azaya89/holoviz-insights/refs/heads/main/data/"
)
repo_files = {
"HoloViews": data_url + "holoviews_metrics.parq",
"hvPlot": data_url + "hvplot_metrics.parq",
"Panel": data_url + "panel_metrics.parq",
"Datashader": data_url + "datashader_metrics.parq",
}
repo_dfs = {
name: pd.read_parquet(url, engine="fastparquet") for name, url in repo_files.items()
}
repo_selector = pmu.Select(
label="Select Repository", options=list(repo_files.keys()), value="HoloViews"
)
release_files = {
"HoloViews": data_url + "holoviews_releases.csv",
"hvPlot": data_url + "hvplot_releases.csv",
"Panel": data_url + "panel_releases.csv",
"Datashader": data_url + "datashader_releases.csv",
}
release_dfs = {
name: pd.read_csv(url, parse_dates=["published_at"])
for name, url in release_files.items()
}
# =============================
# Helper Functions
# =============================
def format_issue_url(url):
try:
return f'<a href="{url}" target="_blank">{url.split("/")[-1]}</a>'
except Exception:
return url
# =============================
# Metric Computation
# =============================
def compute_metrics(df):
metrics = {}
metrics["first_month"] = df.index[-1].strftime("%B %Y")
metrics["last_month"] = df.index[0].strftime("%B %Y")
metrics["total_issues"] = len(df)
open_issues = df[df["time_to_close"].isna()]
metrics["still_open"] = len(open_issues)
metrics["closed"] = len(df) - len(open_issues)
metrics["avg_close_time"] = int(df["time_to_close"].mean().days)
metrics["median_close_time"] = int(df["time_to_close"].median().days)
if "maintainer_responded" in df.columns:
awaiting = open_issues[~open_issues["maintainer_responded"].fillna(False)]
metrics["no_maintainer_response"] = len(awaiting)
else:
metrics["no_maintainer_response"] = None
return metrics
# =============================
# Plot Functions
# =============================
def create_comparison_plot(df):
monthly_opened = df.resample("ME").size()
monthly_closed = df.dropna(subset=["time_to_close"]).resample("ME").size()
comparison_df = pd.DataFrame({"Opened": monthly_opened, "Closed": monthly_closed})
return comparison_df.hvplot.line(
xlabel="Month",
ylabel="Number of Issues",
title="Opened vs Closed Issues per Month",
group_label="Issues",
height=300,
responsive=True,
)
def create_issues_plot(df):
# Calculate the number of open issues for each day
df = df.copy()
df["opened_date"] = df.index.normalize()
df["closed_date"] = df["opened_date"] + df["time_to_close"]
all_dates = pd.date_range(
df["opened_date"].min(), pd.Timestamp.now().normalize(), freq="D"
)
open_counts = pd.Series(0, index=all_dates)
for _, row in df.iterrows():
start = row["opened_date"]
end = row["closed_date"] if pd.notnull(row["closed_date"]) else all_dates[-1]
# Use only the date part for the range
open_range = pd.date_range(start, end, freq="D")
open_counts.loc[open_range] += 1
open_counts.name = "Open Issues"
return open_counts.hvplot.line(
xlabel="Date",
ylabel="Number of Open Issues",
title="Open Issues Over Time",
height=300,
responsive=True,
)
def create_milestone_plot(df):
# Filter to only include open issues
df = df[df["time_to_close"].isna()]
milestone_counts = df["milestone"].value_counts(dropna=False)
milestone_counts.name = "Milestone Issues"
return milestone_counts.hvplot.bar(
title="Open Issues by Milestone",
xlabel="Milestone",
ylabel="Issue Count",
logy=True,
ylim=(1, None),
rot=45,
height=300,
responsive=True,
)
def create_milestone_summary(df):
df = df[df["time_to_close"].isna()]
has_milestone = df["milestone"].notna().sum()
no_milestone = df["milestone"].isna().sum()
summary = pd.Series(
[has_milestone, no_milestone], index=["Has Milestone", "No Milestone"]
)
return summary.hvplot.bar(
title="Open Issues Milestone Coverage",
ylabel="Issue Count",
xlabel="Milestone Presence",
height=300,
responsive=True,
)
def create_release_plot(df, repo_name):
from packaging.version import parse
df = df.copy()
# Extract minor version (e.g., v1.15 from v1.15.0)
df["minor_version"] = df["tag"].str.extract(r"(v?\d+\.\d+)")
# Filter for the last 5 years only
five_years_ago = pd.Timestamp.now(tz=df["published_at"].dt.tz) - pd.DateOffset(
years=5
)
df = df[df["published_at"] >= five_years_ago]
# Version-aware sort of minor versions
unique_minors = df["minor_version"].dropna().unique()
sorted_minors = sorted(unique_minors, key=lambda x: parse(x.lstrip("v")))
# Sort by minor_version and published_at
df["minor_version"] = pd.Categorical(
df["minor_version"], categories=sorted_minors, ordered=True
)
df = df.sort_values(["minor_version", "published_at"]).reset_index(drop=True)
# Use minor_version as y-axis (categorical, ordered)
df["y"] = df["minor_version"]
# Compute rectangle bounds: each bar spans from this release to the next (no overlap)
df["x0"] = df["published_at"]
df["x1"] = df["published_at"].shift(-1)
# Set "x1" to now for the last release
if not df.empty:
df.loc[df.index[-1], "x1"] = pd.Timestamp.now(tz=df["published_at"].dt.tz)
# Add release_span in days
df["release_span"] = (df["x1"] - df["x0"]).dt.days
df["y0"] = df["y"].cat.codes - 0.4
df["y1"] = df["y"].cat.codes + 0.4
last_release = df.iloc[-1]
now = pd.Timestamp.now(tz=last_release["published_at"].tz)
days_since = (now - last_release["published_at"]).days
message = f"🔔 Last release was {days_since} days ago on {last_release['published_at'].date()} ({last_release['tag']})"
rects = hv.Rectangles(
df[
[
"x0",
"y0",
"x1",
"y1",
"tag",
"type",
"published_at",
"minor_version",
"release_span",
]
],
kdims=["x0", "y0", "x1", "y1"],
vdims=["tag", "type", "published_at", "minor_version", "release_span"],
)
rects = rects.opts(
color="type",
cmap={"major": "#eb2f40", "minor": "#0e9c24", "patch": "#0e67bb"},
line_color="white",
alpha=0.8,
tools=["ycrosshair"],
hover_tooltips=[
("Release Version", "@tag"),
("Release Type", "@type"),
("Release Date", "@published_at"),
("Release Span (days)", "@release_span"),
],
xlabel="Date",
ylabel="Minor Version",
yticks=[(i, cat) for i, cat in enumerate(sorted_minors)],
legend_position="bottom_right",
title=f"{repo_name} Release Timeline for the last 5 years",
height=300,
responsive=True,
)
return pn.Column(
pn.pane.Markdown(
f"**{message}**", styles={"color": "gray", "margin-bottom": "16px"}
),
rects,
)
def create_releases_per_year_plot(release_df):
release_df = release_df.copy()
release_df["year"] = release_df["published_at"].dt.year
releases_per_year_type = (
release_df.groupby(["year", "type"]).size().reset_index(name="Releases")
)
return releases_per_year_type.hvplot.bar(
x="year",
y="Releases",
by="type",
stacked=True,
cmap={"major": "#eb2f40", "minor": "#0e9c24", "patch": "#0e67bb"},
xlabel="Year",
ylabel="Number of Releases",
title="Releases per Year (by Type)",
hover_tooltips=[
("Year", "@year"),
("Type", "@type"),
("Releases", "@Releases"),
],
height=300,
responsive=True,
legend="top_right",
)
def create_issues_sankey(df):
metrics = compute_metrics(df)
# total = metrics["total_issues"]
still_open = metrics["still_open"]
closed = metrics["closed"]
no_maint_resp = metrics["no_maintainer_response"]
maint_resp = still_open - no_maint_resp if no_maint_resp is not None else 0
# Sankey data: sources, targets, values
sources = [
"Total Issues Opened",
"Total Issues Opened",
"Issues still open",
"Issues still open",
]
targets = [
"Issues still open",
"Issues closed",
"No Maintainer Response",
"Maintainer Responded",
]
values = [still_open, closed, no_maint_resp or 0, maint_resp]
sankey_data = pd.DataFrame({"source": sources, "target": targets, "value": values})
sankey = hv.Sankey(sankey_data)
sankey = sankey.opts(
label_position="left",
cmap="Set1",
node_color="index",
edge_color="source",
title="Issue Status Flow",
)
return sankey
def create_first_response_trend_plot(df):
df = df.copy()
# Only consider issues with a recorded first response time
df = df[df["time_to_first_response"].notna()]
df["first_response_days"] = df["time_to_first_response"].dt.days
monthly = df.resample("ME").agg(
avg_response=("first_response_days", "mean"),
median_response=("first_response_days", "median"),
count=("first_response_days", "count"),
)
return monthly[["avg_response", "median_response"]].hvplot.line(
xlabel="Month",
ylabel="Days to First Response",
title="Time to First Response Trend",
height=300,
responsive=True,
legend="top_right",
)
# =============================
# UI Components (Filters, Selectors, etc.)
# =============================
styles = {
"box-shadow": "rgba(50, 50, 93, 0.25) 0px 6px 12px -2px, rgba(0, 0, 0, 0.3) 0px 3px 7px -3px",
"border-radius": "5px",
"padding": "10px",
}
maintainer_filter = pmu.RadioButtonGroup(
label="Maintainer Response",
options=["All", "No Maintainer Response", "Maintainer Responded"],
value="All",
size="small",
button_type="success",
)
status_filter = pmu.RadioButtonGroup(
label="Issue Status",
options=["All Issues", "Open Issues", "Closed Issues"],
value="All Issues",
size="small",
button_type="success",
)
# =============================
# Views (Indicators, Plots, Table, Header)
# =============================
indicator_kwargs = dict(
# font_size="25pt",
# title_size="14pt",
default_color=INDICATOR_COLOR,
styles=styles,
)
@pn.depends(repo_selector)
def indicators_view(repo):
df = repo_dfs[repo]
metrics = compute_metrics(df)
indicators = [
pn.indicators.Number(
value=metrics["avg_close_time"],
name="Avg. time to close (days)",
**indicator_kwargs,
),
pn.indicators.Number(
value=metrics["median_close_time"],
name="Median time to close (days)",
**indicator_kwargs,
),
]
return pmu.FlexBox(*indicators)
# State variable to store the active tab index
active_tab_index = [0]
@pn.depends(repo_selector)
def plots_view(repo):
df = repo_dfs[repo]
release_df = release_dfs[repo]
tabs = pmu.Tabs(
("Open vs Closed Issues", create_comparison_plot(df)),
("Open Issues over time", create_issues_plot(df)),
("First Response Trend", create_first_response_trend_plot(df)),
("Release History", create_release_plot(release_df, repo)),
("Releases per Year", create_releases_per_year_plot(release_df)),
("Issues by Milestone", create_milestone_plot(df)),
("Milestone Coverage", create_milestone_summary(df)),
sizing_mode="scale_both",
margin=10,
dynamic=True,
active=active_tab_index[0],
)
def on_tab_change(event):
active_tab_index[0] = event.new
tabs.param.watch(on_tab_change, "active")
return tabs
@pn.depends(repo_selector, status_filter, maintainer_filter)
def table_view(repo, status, maintainer_resp):
df = repo_dfs[repo].copy()
# Convert assignees column from list to comma-separated string for Tabulator filtering
if "assignees" in df.columns:
df["assignees"] = df["assignees"].apply(
lambda x: ", ".join(x)
if isinstance(x, list)
else str(x)
if pd.notnull(x)
else ""
)
if status == "Open Issues":
df = df[df["time_to_close"].isna()]
elif status == "Closed Issues":
df = df[df["time_to_close"].notna()]
# Filter by maintainer response
if "maintainer_responded" in df.columns and maintainer_resp != "All":
mask = df["maintainer_responded"].fillna(False)
if maintainer_resp == "No Maintainer Response":
df = df[~mask]
elif maintainer_resp == "Maintainer Responded":
df = df[mask]
df["issue_no"] = df["html_url"].apply(format_issue_url)
for col in ["time_to_first_response", "time_to_close"]:
# Replace NaT with empty string
df[col] = df[col].astype(str).replace("NaT", "")
df[f"{col}_str"] = df[col]
# Show maintainer_responded as a column
if "maintainer_responded" in df.columns:
df["Maintainer Responded"] = df["maintainer_responded"].map(
{True: "Yes", False: "No"}
)
hidden_cols = [
"html_url",
"time_to_answer",
"time_in_draft",
"time_to_first_response",
"time_to_close",
"maintainer_responded",
]
else:
hidden_cols = [
"html_url",
"time_to_answer",
"time_in_draft",
"time_to_first_response",
"time_to_close",
]
# Reorder columns: prioritize 'title', 'issue_no', 'author' first
priority_cols = ["title", "issue_no", "author"]
rest_cols = [c for c in df.columns if c not in priority_cols]
df = df[priority_cols + rest_cols]
table = pn.widgets.Tabulator(
df,
name="Table",
hidden_columns=hidden_cols,
pagination="remote",
page_size=10,
formatters={"issue_no": "html"},
widths={"title": 300},
header_filters=True,
)
return pn.Column(pn.pane.Markdown(f"### Length of table: {len(df)} rows"), table)
@pn.depends(repo_selector)
def header_text(repo):
df = repo_dfs[repo]
metrics = compute_metrics(df)
text = f"""
## {repo} Dashboard
**Issue Metrics from {metrics["first_month"]} to {metrics["last_month"]}**
"""
return text
# =============================
# Page Layout & App Launch
# =============================
note = """
The issue metrics shown here are not a full historical record, but represent a snapshot collected automatically at the start of each month.\n
Data covers issues from the start of the stated month up to the end of stated month, and is refreshed at the beginning of every new month.
"""
icon = pn.widgets.TooltipIcon(value=note)
logo = "https://holoviz.org/_static/holoviz-logo.svg"
logo_pane = pn.pane.Image(logo, width=200, align="center", margin=(10, 0, 10, 0))
# Define the issues_sankey_view function before the page layout
@pn.depends(repo_selector)
def issues_sankey_view(repo):
df = repo_dfs[repo]
return create_issues_sankey(df)
page = pmu.Page(
main=[
pn.Row(header_text, icon),
"## Summary Insights",
issues_sankey_view,
indicators_view,
"## Data Table",
table_view,
"## Plots",
plots_view,
],
sidebar=[
logo_pane,
repo_selector,
"## Issue Status",
status_filter,
"## Maintainer Response",
maintainer_filter,
],
title="HoloViz Issue Metrics Dashboard",
theme_config={
"palette": {
"primary": {"main": HEADER_COLOR},
"background": {
"paper": PAPER_COLOR,
},
}
},
theme_toggle=False,
)
page.servable()