Spaces:
Build error
Build error
File size: 16,830 Bytes
b5dd7f4 db8dff1 3ebae97 db8dff1 9ae88b4 7df1475 627be83 3304f43 3ebae97 db8dff1 b5dd7f4 17c01dd db8dff1 b5dd7f4 9ae88b4 3ebae97 9ae88b4 bf2ab49 3ebae97 db8dff1 627be83 7df1475 3ebae97 db8dff1 9ae88b4 bf2ab49 9ae88b4 b5dd7f4 17c01dd b5dd7f4 17c01dd b5dd7f4 17c01dd 175afc3 17c01dd 175afc3 17c01dd 175afc3 17c01dd 175afc3 17c01dd 175afc3 17c01dd 9ae88b4 f2f4c2e 9ae88b4 f2f4c2e 9ae88b4 f2f4c2e b5dd7f4 f2f4c2e 9ae88b4 b5dd7f4 9ae88b4 b5dd7f4 9ae88b4 f2f4c2e b5dd7f4 f2f4c2e 175afc3 9ae88b4 3ebae97 9ae88b4 17c01dd 9ae88b4 17c01dd 9ae88b4 175afc3 17c01dd 9ae88b4 17c01dd 71d192e b5dd7f4 db8dff1 b5dd7f4 17c01dd b5dd7f4 17c01dd b5dd7f4 17c01dd b5dd7f4 db8dff1 b5dd7f4 17c01dd 3ebae97 b5dd7f4 3ebae97 17c01dd 3ebae97 17c01dd 3ebae97 b5dd7f4 db8dff1 9ae88b4 3ebae97 9ae88b4 7df1475 3ebae97 71d192e 9ae88b4 f2f4c2e 3ebae97 9ae88b4 3ebae97 db8dff1 9ae88b4 db8dff1 9ae88b4 b5dd7f4 3ebae97 175afc3 9ae88b4 b5dd7f4 17c01dd b5dd7f4 3ebae97 175afc3 b5dd7f4 3ebae97 b5dd7f4 17c01dd b5dd7f4 3ebae97 175afc3 3ebae97 17c01dd 175afc3 3ebae97 17c01dd db8dff1 3ebae97 7df1475 0aa0694 3ebae97 db8dff1 b5dd7f4 0aa0694 7df1475 17c01dd 7df1475 0aa0694 17c01dd 7df1475 17c01dd 7df1475 b5dd7f4 7df1475 db8dff1 7df1475 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
# =============================
# Imports & Extensions
# =============================
import pandas as pd
import hvplot.pandas # noqa
import panel as pn
import holoviews as hv
import panel_material_ui as pmu
import fastparquet # noqa
pn.extension("tabulator", autoreload=True)
# =============================
# Constants & Theme Config
# =============================
HEADER_COLOR = "#4199DA"
PAPER_COLOR = "#f5f4ef"
INDICATOR_COLOR = "#221cd9"
# =============================
# Data Loading
# =============================
data_url = (
"https://raw.githubusercontent.com/Azaya89/holoviz-insights/refs/heads/main/data/"
)
repo_files = {
"HoloViews": data_url + "holoviews_metrics.parq",
"hvPlot": data_url + "hvplot_metrics.parq",
"Panel": data_url + "panel_metrics.parq",
"Datashader": data_url + "datashader_metrics.parq",
}
repo_dfs = {
name: pd.read_parquet(url, engine="fastparquet") for name, url in repo_files.items()
}
repo_selector = pmu.Select(
label="Select Repository", options=list(repo_files.keys()), value="HoloViews"
)
release_files = {
"HoloViews": data_url + "holoviews_releases.csv",
"hvPlot": data_url + "hvplot_releases.csv",
"Panel": data_url + "panel_releases.csv",
"Datashader": data_url + "datashader_releases.csv",
}
release_dfs = {
name: pd.read_csv(url, parse_dates=["published_at"])
for name, url in release_files.items()
}
# =============================
# Helper Functions
# =============================
def format_issue_url(url):
try:
return f'<a href="{url}" target="_blank">{url.split("/")[-1]}</a>'
except Exception:
return url
# =============================
# Metric Computation
# =============================
def compute_metrics(df):
metrics = {}
metrics["first_month"] = df.index[-1].strftime("%B %Y")
metrics["last_month"] = df.index[0].strftime("%B %Y")
metrics["total_issues"] = len(df)
open_issues = df[df["time_to_close"].isna()]
metrics["still_open"] = len(open_issues)
metrics["closed"] = len(df) - len(open_issues)
metrics["avg_close_time"] = int(df["time_to_close"].mean().days)
metrics["median_close_time"] = int(df["time_to_close"].median().days)
if "maintainer_responded" in df.columns:
awaiting = open_issues[~open_issues["maintainer_responded"].fillna(False)]
metrics["no_maintainer_response"] = len(awaiting)
else:
metrics["no_maintainer_response"] = None
return metrics
# =============================
# Plot Functions
# =============================
def create_comparison_plot(df):
monthly_opened = df.resample("ME").size()
monthly_closed = df.dropna(subset=["time_to_close"]).resample("ME").size()
comparison_df = pd.DataFrame({"Opened": monthly_opened, "Closed": monthly_closed})
return comparison_df.hvplot.line(
xlabel="Month",
ylabel="Number of Issues",
title="Opened vs Closed Issues per Month",
group_label="Issues",
height=300,
responsive=True,
)
def create_issues_plot(df):
# Calculate the number of open issues for each day
df = df.copy()
df["opened_date"] = df.index.normalize()
df["closed_date"] = df["opened_date"] + df["time_to_close"]
all_dates = pd.date_range(
df["opened_date"].min(), pd.Timestamp.now().normalize(), freq="D"
)
open_counts = pd.Series(0, index=all_dates)
for _, row in df.iterrows():
start = row["opened_date"]
end = row["closed_date"] if pd.notnull(row["closed_date"]) else all_dates[-1]
# Use only the date part for the range
open_range = pd.date_range(start, end, freq="D")
open_counts.loc[open_range] += 1
open_counts.name = "Open Issues"
return open_counts.hvplot.line(
xlabel="Date",
ylabel="Number of Open Issues",
title="Open Issues Over Time",
height=300,
responsive=True,
)
def create_milestone_plot(df):
# Filter to only include open issues
df = df[df["time_to_close"].isna()]
milestone_counts = df["milestone"].value_counts(dropna=False)
milestone_counts.name = "Milestone Issues"
return milestone_counts.hvplot.bar(
title="Open Issues by Milestone",
xlabel="Milestone",
ylabel="Issue Count",
logy=True,
ylim=(1, None),
rot=45,
height=300,
responsive=True,
)
def create_milestone_summary(df):
df = df[df["time_to_close"].isna()]
has_milestone = df["milestone"].notna().sum()
no_milestone = df["milestone"].isna().sum()
summary = pd.Series(
[has_milestone, no_milestone], index=["Has Milestone", "No Milestone"]
)
return summary.hvplot.bar(
title="Open Issues Milestone Coverage",
ylabel="Issue Count",
xlabel="Milestone Presence",
height=300,
responsive=True,
)
def create_release_plot(df, repo_name):
from packaging.version import parse
df = df.copy()
# Extract minor version (e.g., v1.15 from v1.15.0)
df["minor_version"] = df["tag"].str.extract(r"(v?\d+\.\d+)")
# Filter for the last 5 years only
five_years_ago = pd.Timestamp.now(tz=df["published_at"].dt.tz) - pd.DateOffset(
years=5
)
df = df[df["published_at"] >= five_years_ago]
# Version-aware sort of minor versions
unique_minors = df["minor_version"].dropna().unique()
sorted_minors = sorted(unique_minors, key=lambda x: parse(x.lstrip("v")))
# Sort by minor_version and published_at
df["minor_version"] = pd.Categorical(
df["minor_version"], categories=sorted_minors, ordered=True
)
df = df.sort_values(["minor_version", "published_at"]).reset_index(drop=True)
# Use minor_version as y-axis (categorical, ordered)
df["y"] = df["minor_version"]
# Compute rectangle bounds: each bar spans from this release to the next (no overlap)
df["x0"] = df["published_at"]
df["x1"] = df["published_at"].shift(-1)
# Set "x1" to now for the last release
if not df.empty:
df.loc[df.index[-1], "x1"] = pd.Timestamp.now(tz=df["published_at"].dt.tz)
# Add release_span in days
df["release_span"] = (df["x1"] - df["x0"]).dt.days
df["y0"] = df["y"].cat.codes - 0.4
df["y1"] = df["y"].cat.codes + 0.4
last_release = df.iloc[-1]
now = pd.Timestamp.now(tz=last_release["published_at"].tz)
days_since = (now - last_release["published_at"]).days
message = f"π Last release was {days_since} days ago on {last_release['published_at'].date()} ({last_release['tag']})"
rects = hv.Rectangles(
df[
[
"x0",
"y0",
"x1",
"y1",
"tag",
"type",
"published_at",
"minor_version",
"release_span",
]
],
kdims=["x0", "y0", "x1", "y1"],
vdims=["tag", "type", "published_at", "minor_version", "release_span"],
)
rects = rects.opts(
color="type",
cmap={"major": "#eb2f40", "minor": "#0e9c24", "patch": "#0e67bb"},
line_color="white",
alpha=0.8,
tools=["ycrosshair"],
hover_tooltips=[
("Release Version", "@tag"),
("Release Type", "@type"),
("Release Date", "@published_at"),
("Release Span (days)", "@release_span"),
],
xlabel="Date",
ylabel="Minor Version",
yticks=[(i, cat) for i, cat in enumerate(sorted_minors)],
legend_position="bottom_right",
title=f"{repo_name} Release Timeline for the last 5 years",
height=300,
responsive=True,
)
return pn.Column(
pn.pane.Markdown(
f"**{message}**", styles={"color": "gray", "margin-bottom": "16px"}
),
rects,
)
def create_releases_per_year_plot(release_df):
release_df = release_df.copy()
release_df["year"] = release_df["published_at"].dt.year
releases_per_year_type = (
release_df.groupby(["year", "type"]).size().reset_index(name="Releases")
)
return releases_per_year_type.hvplot.bar(
x="year",
y="Releases",
by="type",
stacked=True,
cmap={"major": "#eb2f40", "minor": "#0e9c24", "patch": "#0e67bb"},
xlabel="Year",
ylabel="Number of Releases",
title="Releases per Year (by Type)",
hover_tooltips=[
("Year", "@year"),
("Type", "@type"),
("Releases", "@Releases"),
],
height=300,
responsive=True,
legend="top_right",
)
def create_issues_sankey(df):
metrics = compute_metrics(df)
# total = metrics["total_issues"]
still_open = metrics["still_open"]
closed = metrics["closed"]
no_maint_resp = metrics["no_maintainer_response"]
maint_resp = still_open - no_maint_resp if no_maint_resp is not None else 0
# Sankey data: sources, targets, values
sources = [
"Total Issues Opened",
"Total Issues Opened",
"Issues still open",
"Issues still open",
]
targets = [
"Issues still open",
"Issues closed",
"No Maintainer Response",
"Maintainer Responded",
]
values = [still_open, closed, no_maint_resp or 0, maint_resp]
sankey_data = pd.DataFrame({"source": sources, "target": targets, "value": values})
sankey = hv.Sankey(sankey_data)
sankey = sankey.opts(
label_position="left",
cmap="Set1",
node_color="index",
edge_color="source",
title="Issue Status Flow",
)
return sankey
def create_first_response_trend_plot(df):
df = df.copy()
# Only consider issues with a recorded first response time
df = df[df["time_to_first_response"].notna()]
df["first_response_days"] = df["time_to_first_response"].dt.days
monthly = df.resample("ME").agg(
avg_response=("first_response_days", "mean"),
median_response=("first_response_days", "median"),
count=("first_response_days", "count"),
)
return monthly[["avg_response", "median_response"]].hvplot.line(
xlabel="Month",
ylabel="Days to First Response",
title="Time to First Response Trend",
height=300,
responsive=True,
legend="top_right",
)
# =============================
# UI Components (Filters, Selectors, etc.)
# =============================
styles = {
"box-shadow": "rgba(50, 50, 93, 0.25) 0px 6px 12px -2px, rgba(0, 0, 0, 0.3) 0px 3px 7px -3px",
"border-radius": "5px",
"padding": "10px",
}
maintainer_filter = pmu.RadioButtonGroup(
label="Maintainer Response",
options=["All", "No Maintainer Response", "Maintainer Responded"],
value="All",
size="small",
button_type="success",
)
status_filter = pmu.RadioButtonGroup(
label="Issue Status",
options=["All Issues", "Open Issues", "Closed Issues"],
value="All Issues",
size="small",
button_type="success",
)
# =============================
# Views (Indicators, Plots, Table, Header)
# =============================
indicator_kwargs = dict(
# font_size="25pt",
# title_size="14pt",
default_color=INDICATOR_COLOR,
styles=styles,
)
@pn.depends(repo_selector)
def indicators_view(repo):
df = repo_dfs[repo]
metrics = compute_metrics(df)
indicators = [
pn.indicators.Number(
value=metrics["avg_close_time"],
name="Avg. time to close (days)",
**indicator_kwargs,
),
pn.indicators.Number(
value=metrics["median_close_time"],
name="Median time to close (days)",
**indicator_kwargs,
),
]
return pmu.FlexBox(*indicators)
# State variable to store the active tab index
active_tab_index = [0]
@pn.depends(repo_selector)
def plots_view(repo):
df = repo_dfs[repo]
release_df = release_dfs[repo]
tabs = pmu.Tabs(
("Open vs Closed Issues", create_comparison_plot(df)),
("Open Issues over time", create_issues_plot(df)),
("First Response Trend", create_first_response_trend_plot(df)),
("Release History", create_release_plot(release_df, repo)),
("Releases per Year", create_releases_per_year_plot(release_df)),
("Issues by Milestone", create_milestone_plot(df)),
("Milestone Coverage", create_milestone_summary(df)),
sizing_mode="scale_both",
margin=10,
dynamic=True,
active=active_tab_index[0],
)
def on_tab_change(event):
active_tab_index[0] = event.new
tabs.param.watch(on_tab_change, "active")
return tabs
@pn.depends(repo_selector, status_filter, maintainer_filter)
def table_view(repo, status, maintainer_resp):
df = repo_dfs[repo].copy()
# Convert assignees column from list to comma-separated string for Tabulator filtering
if "assignees" in df.columns:
df["assignees"] = df["assignees"].apply(
lambda x: ", ".join(x)
if isinstance(x, list)
else str(x)
if pd.notnull(x)
else ""
)
if status == "Open Issues":
df = df[df["time_to_close"].isna()]
elif status == "Closed Issues":
df = df[df["time_to_close"].notna()]
# Filter by maintainer response
if "maintainer_responded" in df.columns and maintainer_resp != "All":
mask = df["maintainer_responded"].fillna(False)
if maintainer_resp == "No Maintainer Response":
df = df[~mask]
elif maintainer_resp == "Maintainer Responded":
df = df[mask]
df["issue_no"] = df["html_url"].apply(format_issue_url)
for col in ["time_to_first_response", "time_to_close"]:
# Replace NaT with empty string
df[col] = df[col].astype(str).replace("NaT", "")
df[f"{col}_str"] = df[col]
# Show maintainer_responded as a column
if "maintainer_responded" in df.columns:
df["Maintainer Responded"] = df["maintainer_responded"].map(
{True: "Yes", False: "No"}
)
hidden_cols = [
"html_url",
"time_to_answer",
"time_in_draft",
"time_to_first_response",
"time_to_close",
"maintainer_responded",
]
else:
hidden_cols = [
"html_url",
"time_to_answer",
"time_in_draft",
"time_to_first_response",
"time_to_close",
]
# Reorder columns: prioritize 'title', 'issue_no', 'author' first
priority_cols = ["title", "issue_no", "author"]
rest_cols = [c for c in df.columns if c not in priority_cols]
df = df[priority_cols + rest_cols]
table = pn.widgets.Tabulator(
df,
name="Table",
hidden_columns=hidden_cols,
pagination="remote",
page_size=10,
formatters={"issue_no": "html"},
widths={"title": 300},
header_filters=True,
)
return pn.Column(pn.pane.Markdown(f"### Length of table: {len(df)} rows"), table)
@pn.depends(repo_selector)
def header_text(repo):
df = repo_dfs[repo]
metrics = compute_metrics(df)
text = f"""
## {repo} Dashboard
**Issue Metrics from {metrics["first_month"]} to {metrics["last_month"]}**
"""
return text
# =============================
# Page Layout & App Launch
# =============================
note = """
The issue metrics shown here are not a full historical record, but represent a snapshot collected automatically at the start of each month.\n
Data covers issues from the start of the stated month up to the end of stated month, and is refreshed at the beginning of every new month.
"""
icon = pn.widgets.TooltipIcon(value=note)
logo = "https://holoviz.org/_static/holoviz-logo.svg"
logo_pane = pn.pane.Image(logo, width=200, align="center", margin=(10, 0, 10, 0))
# Define the issues_sankey_view function before the page layout
@pn.depends(repo_selector)
def issues_sankey_view(repo):
df = repo_dfs[repo]
return create_issues_sankey(df)
page = pmu.Page(
main=[
pn.Row(header_text, icon),
"## Summary Insights",
issues_sankey_view,
indicators_view,
"## Data Table",
table_view,
"## Plots",
plots_view,
],
sidebar=[
logo_pane,
repo_selector,
"## Issue Status",
status_filter,
"## Maintainer Response",
maintainer_filter,
],
title="HoloViz Issue Metrics Dashboard",
theme_config={
"palette": {
"primary": {"main": HEADER_COLOR},
"background": {
"paper": PAPER_COLOR,
},
}
},
theme_toggle=False,
)
page.servable()
|