Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import torch
|
3 |
+
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
import re
|
7 |
+
from typing import List, Tuple
|
8 |
+
import os
|
9 |
+
|
10 |
+
# Set cache directory (important for Hugging Face Spaces)
|
11 |
+
CACHE_DIR = "model_cache"
|
12 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
13 |
+
|
14 |
+
|
15 |
+
class RiverPollutionAnalyzer:
|
16 |
+
def __init__(self):
|
17 |
+
try:
|
18 |
+
# Load with caching and optimized device placement
|
19 |
+
self.processor = InstructBlipProcessor.from_pretrained(
|
20 |
+
"Salesforce/instructblip-vicuna-7b", cache_dir=CACHE_DIR
|
21 |
+
)
|
22 |
+
|
23 |
+
self.model = InstructBlipForConditionalGeneration.from_pretrained(
|
24 |
+
"Salesforce/instructblip-vicuna-7b",
|
25 |
+
cache_dir=CACHE_DIR,
|
26 |
+
device_map="auto",
|
27 |
+
torch_dtype=torch.float16,
|
28 |
+
offload_folder="offload",
|
29 |
+
low_cpu_mem_usage=True,
|
30 |
+
)
|
31 |
+
|
32 |
+
except Exception as e:
|
33 |
+
raise RuntimeError(f"Model loading failed: {str(e)}")
|
34 |
+
|
35 |
+
self.pollutants = [
|
36 |
+
"plastic waste",
|
37 |
+
"chemical foam",
|
38 |
+
"industrial discharge",
|
39 |
+
"sewage water",
|
40 |
+
"oil spill",
|
41 |
+
"organic debris",
|
42 |
+
"construction waste",
|
43 |
+
"medical waste",
|
44 |
+
"floating trash",
|
45 |
+
"algal bloom",
|
46 |
+
"toxic sludge",
|
47 |
+
"agricultural runoff",
|
48 |
+
]
|
49 |
+
|
50 |
+
self.severity_descriptions = {
|
51 |
+
1: "Minimal pollution - Slightly noticeable",
|
52 |
+
2: "Minor pollution - Small amounts visible",
|
53 |
+
3: "Moderate pollution - Clearly visible",
|
54 |
+
4: "Significant pollution - Affecting water quality",
|
55 |
+
5: "Heavy pollution - Obvious environmental impact",
|
56 |
+
6: "Severe pollution - Large accumulation",
|
57 |
+
7: "Very severe pollution - Major ecosystem impact",
|
58 |
+
8: "Extreme pollution - Dangerous levels",
|
59 |
+
9: "Critical pollution - Immediate action needed",
|
60 |
+
10: "Disaster level - Ecological catastrophe",
|
61 |
+
}
|
62 |
+
|
63 |
+
def analyze_image(self, image):
|
64 |
+
"""Analyze river pollution with robust parsing"""
|
65 |
+
if not isinstance(image, Image.Image):
|
66 |
+
image = Image.fromarray(image)
|
67 |
+
|
68 |
+
prompt = """Analyze this river pollution scene and provide:
|
69 |
+
1. List ALL visible pollutants ONLY from: [plastic waste, chemical foam, industrial discharge, sewage water, oil spill, organic debris, construction waste, medical waste, floating trash, algal bloom, toxic sludge, agricultural runoff]
|
70 |
+
2. Estimate pollution severity from 1-10
|
71 |
+
|
72 |
+
Respond EXACTLY in this format:
|
73 |
+
Pollutants: [comma separated list]
|
74 |
+
Severity: [number]"""
|
75 |
+
|
76 |
+
inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(
|
77 |
+
self.model.device
|
78 |
+
)
|
79 |
+
|
80 |
+
with torch.no_grad():
|
81 |
+
outputs = self.model.generate(
|
82 |
+
**inputs,
|
83 |
+
max_new_tokens=200,
|
84 |
+
temperature=0.5,
|
85 |
+
top_p=0.85,
|
86 |
+
do_sample=True,
|
87 |
+
)
|
88 |
+
|
89 |
+
analysis = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
90 |
+
pollutants, severity = self._parse_response(analysis)
|
91 |
+
return self._format_analysis(pollutants, severity)
|
92 |
+
|
93 |
+
# ... [keep all your other methods unchanged] ...
|
94 |
+
|
95 |
+
|
96 |
+
# Initialize analyzer with error handling
|
97 |
+
try:
|
98 |
+
analyzer = RiverPollutionAnalyzer()
|
99 |
+
model_status = "Model loaded successfully!"
|
100 |
+
except Exception as e:
|
101 |
+
analyzer = None
|
102 |
+
model_status = f"Model failed to load: {str(e)}"
|
103 |
+
print(model_status)
|
104 |
+
|
105 |
+
|
106 |
+
# Create wrapper function for Gradio
|
107 |
+
def analyze_image_wrapper(image):
|
108 |
+
if analyzer is None:
|
109 |
+
return (
|
110 |
+
f"⚠️ Error: {model_status}\nPlease try again later or use a smaller image."
|
111 |
+
)
|
112 |
+
return analyzer.analyze_image(image)
|
113 |
+
|
114 |
+
|
115 |
+
# Gradio interface
|
116 |
+
css = """
|
117 |
+
/* [keep your existing CSS] */
|
118 |
+
"""
|
119 |
+
|
120 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
121 |
+
# [keep all your existing UI code]
|
122 |
+
|
123 |
+
analyze_btn.click(
|
124 |
+
analyze_image_wrapper, inputs=image_input, outputs=analysis_output
|
125 |
+
)
|
126 |
+
|
127 |
+
# Update examples to use wrapper
|
128 |
+
gr.Examples(
|
129 |
+
examples=[
|
130 |
+
[
|
131 |
+
"https://huggingface.co/spaces/Atharwaaah/SLCR-FLOWCODE-tarak.AI/resolve/main/polluted_river1.jpg"
|
132 |
+
],
|
133 |
+
[
|
134 |
+
"https://huggingface.co/spaces/Atharwaaah/SLCR-FLOWCODE-tarak.AI/resolve/main/polluted_river2.jpg"
|
135 |
+
],
|
136 |
+
],
|
137 |
+
inputs=image_input,
|
138 |
+
outputs=analysis_output,
|
139 |
+
fn=analyze_image_wrapper,
|
140 |
+
cache_examples=True,
|
141 |
+
label="Try example images:",
|
142 |
+
)
|
143 |
+
|
144 |
+
demo.launch()
|