Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,273 +0,0 @@
|
|
1 |
-
# app.py
|
2 |
-
import torch
|
3 |
-
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
|
4 |
-
import gradio as gr
|
5 |
-
from PIL import Image
|
6 |
-
import re
|
7 |
-
from typing import List, Tuple
|
8 |
-
import os
|
9 |
-
|
10 |
-
|
11 |
-
class RiverPollutionAnalyzer:
|
12 |
-
def __init__(self):
|
13 |
-
# Check if CUDA is available
|
14 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
-
|
16 |
-
# Load model with appropriate settings for Spaces
|
17 |
-
self.processor = InstructBlipProcessor.from_pretrained(
|
18 |
-
"Salesforce/instructblip-vicuna-7b"
|
19 |
-
)
|
20 |
-
|
21 |
-
# Simplified model loading for Spaces compatibility
|
22 |
-
self.model = InstructBlipForConditionalGeneration.from_pretrained(
|
23 |
-
"Salesforce/instructblip-vicuna-7b",
|
24 |
-
device_map="auto",
|
25 |
-
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
26 |
-
).to(self.device)
|
27 |
-
|
28 |
-
self.pollutants = [
|
29 |
-
"plastic waste",
|
30 |
-
"chemical foam",
|
31 |
-
"industrial discharge",
|
32 |
-
"sewage water",
|
33 |
-
"oil spill",
|
34 |
-
"organic debris",
|
35 |
-
"construction waste",
|
36 |
-
"medical waste",
|
37 |
-
"floating trash",
|
38 |
-
"algal bloom",
|
39 |
-
"toxic sludge",
|
40 |
-
"agricultural runoff",
|
41 |
-
]
|
42 |
-
|
43 |
-
self.severity_descriptions = {
|
44 |
-
1: "Minimal pollution - Slightly noticeable",
|
45 |
-
2: "Minor pollution - Small amounts visible",
|
46 |
-
3: "Moderate pollution - Clearly visible",
|
47 |
-
4: "Significant pollution - Affecting water quality",
|
48 |
-
5: "Heavy pollution - Obvious environmental impact",
|
49 |
-
6: "Severe pollution - Large accumulation",
|
50 |
-
7: "Very severe pollution - Major ecosystem impact",
|
51 |
-
8: "Extreme pollution - Dangerous levels",
|
52 |
-
9: "Critical pollution - Immediate action needed",
|
53 |
-
10: "Disaster level - Ecological catastrophe",
|
54 |
-
}
|
55 |
-
|
56 |
-
def analyze_image(self, image):
|
57 |
-
"""Analyze river pollution with robust parsing"""
|
58 |
-
if not isinstance(image, Image.Image):
|
59 |
-
image = Image.fromarray(image)
|
60 |
-
|
61 |
-
prompt = """Analyze this river pollution scene and provide:
|
62 |
-
1. List ALL visible pollutants ONLY from: [plastic waste, chemical foam, industrial discharge, sewage water, oil spill, organic debris, construction waste, medical waste, floating trash, algal bloom, toxic sludge, agricultural runoff]
|
63 |
-
2. Estimate pollution severity from 1-10
|
64 |
-
|
65 |
-
Respond EXACTLY in this format:
|
66 |
-
Pollutants: [comma separated list]
|
67 |
-
Severity: [number]"""
|
68 |
-
|
69 |
-
inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(
|
70 |
-
self.device
|
71 |
-
)
|
72 |
-
|
73 |
-
with torch.no_grad():
|
74 |
-
outputs = self.model.generate(
|
75 |
-
**inputs,
|
76 |
-
max_new_tokens=200,
|
77 |
-
temperature=0.5,
|
78 |
-
top_p=0.85,
|
79 |
-
do_sample=True,
|
80 |
-
)
|
81 |
-
|
82 |
-
analysis = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
83 |
-
pollutants, severity = self._parse_response(analysis)
|
84 |
-
return self._format_analysis(pollutants, severity)
|
85 |
-
|
86 |
-
def _parse_response(self, analysis: str) -> Tuple[List[str], int]:
|
87 |
-
"""Robust parsing of model response"""
|
88 |
-
pollutants = []
|
89 |
-
severity = 3
|
90 |
-
|
91 |
-
# Extract pollutants
|
92 |
-
pollutant_match = re.search(
|
93 |
-
r"(?i)(pollutants?|contaminants?)[:\s]*\[?(.*?)(?:\]|Severity|severity|$)",
|
94 |
-
analysis,
|
95 |
-
)
|
96 |
-
|
97 |
-
if pollutant_match:
|
98 |
-
pollutants_str = pollutant_match.group(2).strip()
|
99 |
-
pollutants = [
|
100 |
-
p.strip().lower()
|
101 |
-
for p in re.split(r"[,;]|\band\b", pollutants_str)
|
102 |
-
if p.strip().lower() in self.pollutants
|
103 |
-
]
|
104 |
-
|
105 |
-
# Extract severity
|
106 |
-
severity_match = re.search(r"(?i)(severity|level)[:\s]*(\d{1,2})", analysis)
|
107 |
-
|
108 |
-
if severity_match:
|
109 |
-
try:
|
110 |
-
severity = min(max(int(severity_match.group(2)), 1), 10)
|
111 |
-
except:
|
112 |
-
severity = self._calculate_severity(pollutants)
|
113 |
-
else:
|
114 |
-
severity = self._calculate_severity(pollutants)
|
115 |
-
|
116 |
-
return pollutants, severity
|
117 |
-
|
118 |
-
def _calculate_severity(self, pollutants: List[str]) -> int:
|
119 |
-
"""Weighted severity calculation"""
|
120 |
-
if not pollutants:
|
121 |
-
return 1
|
122 |
-
|
123 |
-
weights = {
|
124 |
-
"medical waste": 3,
|
125 |
-
"toxic sludge": 3,
|
126 |
-
"oil spill": 2.5,
|
127 |
-
"chemical foam": 2,
|
128 |
-
"industrial discharge": 2,
|
129 |
-
"sewage water": 2,
|
130 |
-
"plastic waste": 1.5,
|
131 |
-
"construction waste": 1.5,
|
132 |
-
"algal bloom": 1.5,
|
133 |
-
"agricultural runoff": 1.5,
|
134 |
-
"floating trash": 1,
|
135 |
-
"organic debris": 1,
|
136 |
-
}
|
137 |
-
|
138 |
-
avg_weight = sum(weights.get(p, 1) for p in pollutants) / len(pollutants)
|
139 |
-
return min(10, max(1, round(avg_weight * 3)))
|
140 |
-
|
141 |
-
def _format_analysis(self, pollutants: List[str], severity: int) -> str:
|
142 |
-
"""Generate formatted report"""
|
143 |
-
severity_bar = f"""📊 Severity: {severity}/10
|
144 |
-
{"█" * severity}{"░" * (10 - severity)}
|
145 |
-
{self.severity_descriptions.get(severity, "")}"""
|
146 |
-
|
147 |
-
pollutants_list = (
|
148 |
-
"\n🔍 No pollutants detected"
|
149 |
-
if not pollutants
|
150 |
-
else "\n".join(
|
151 |
-
f"{i}. {p.capitalize()}" for i, p in enumerate(pollutants[:5], 1)
|
152 |
-
)
|
153 |
-
)
|
154 |
-
|
155 |
-
return f"""🌊 River Pollution Analysis 🌊
|
156 |
-
{pollutants_list}
|
157 |
-
{severity_bar}"""
|
158 |
-
|
159 |
-
def analyze_chat(self, message: str) -> str:
|
160 |
-
"""Handle chat questions about pollution"""
|
161 |
-
# Simple implementation - you can expand this
|
162 |
-
if any(word in message.lower() for word in ["hello", "hi", "hey"]):
|
163 |
-
return "Hello! I'm a river pollution analyzer. Ask me about pollution types or upload an image for analysis."
|
164 |
-
elif "pollution" in message.lower():
|
165 |
-
return "Common river pollutants include: plastic waste, chemical foam, industrial discharge, sewage water, and oil spills."
|
166 |
-
else:
|
167 |
-
return "I can answer questions about river pollution. Try asking about pollution types or upload an image for analysis."
|
168 |
-
|
169 |
-
|
170 |
-
# Initialize analyzer
|
171 |
-
analyzer = RiverPollutionAnalyzer()
|
172 |
-
|
173 |
-
css = """
|
174 |
-
.header {
|
175 |
-
text-align: center;
|
176 |
-
padding: 20px;
|
177 |
-
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
178 |
-
border-radius: 10px;
|
179 |
-
margin-bottom: 20px;
|
180 |
-
}
|
181 |
-
|
182 |
-
.side-by-side {
|
183 |
-
display: flex;
|
184 |
-
gap: 20px;
|
185 |
-
}
|
186 |
-
|
187 |
-
.left-panel, .right-panel {
|
188 |
-
flex: 1;
|
189 |
-
}
|
190 |
-
|
191 |
-
.analysis-box {
|
192 |
-
padding: 20px;
|
193 |
-
background: #f8f9fa;
|
194 |
-
border-radius: 10px;
|
195 |
-
margin-top: 20px;
|
196 |
-
border: 1px solid #dee2e6;
|
197 |
-
}
|
198 |
-
|
199 |
-
.chat-container {
|
200 |
-
background: #f8f9fa;
|
201 |
-
padding: 20px;
|
202 |
-
border-radius: 10px;
|
203 |
-
height: 100%;
|
204 |
-
}
|
205 |
-
"""
|
206 |
-
|
207 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
208 |
-
with gr.Column(elem_classes="header"):
|
209 |
-
gr.Markdown("# 🌍 River Pollution Analyzer")
|
210 |
-
gr.Markdown("### AI-powered water pollution detection")
|
211 |
-
|
212 |
-
with gr.Row(elem_classes="side-by-side"):
|
213 |
-
# Left Panel
|
214 |
-
with gr.Column(elem_classes="left-panel"):
|
215 |
-
with gr.Group():
|
216 |
-
image_input = gr.Image(
|
217 |
-
type="pil", label="Upload River Image", height=300
|
218 |
-
)
|
219 |
-
analyze_btn = gr.Button("🔍 Analyze Pollution", variant="primary")
|
220 |
-
|
221 |
-
with gr.Group(elem_classes="analysis-box"):
|
222 |
-
gr.Markdown("### 📊 Analysis report")
|
223 |
-
analysis_output = gr.Markdown()
|
224 |
-
|
225 |
-
# Right Panel
|
226 |
-
with gr.Column(elem_classes="right-panel"):
|
227 |
-
with gr.Group(elem_classes="chat-container"):
|
228 |
-
chatbot = gr.Chatbot(label="Pollution Analysis Q&A", height=400)
|
229 |
-
with gr.Row():
|
230 |
-
chat_input = gr.Textbox(
|
231 |
-
placeholder="Ask about pollution sources...",
|
232 |
-
label="Your Question",
|
233 |
-
container=False,
|
234 |
-
scale=5,
|
235 |
-
)
|
236 |
-
chat_btn = gr.Button("💬 Ask", variant="secondary", scale=1)
|
237 |
-
clear_btn = gr.Button("🧹 Clear Chat History", size="sm")
|
238 |
-
|
239 |
-
analyze_btn.click(
|
240 |
-
analyzer.analyze_image, inputs=image_input, outputs=analysis_output
|
241 |
-
)
|
242 |
-
|
243 |
-
chat_input.submit(
|
244 |
-
lambda msg, chat: ("", chat + [(msg, analyzer.analyze_chat(msg))]),
|
245 |
-
inputs=[chat_input, chatbot],
|
246 |
-
outputs=[chat_input, chatbot],
|
247 |
-
)
|
248 |
-
|
249 |
-
chat_btn.click(
|
250 |
-
lambda msg, chat: ("", chat + [(msg, analyzer.analyze_chat(msg))]),
|
251 |
-
inputs=[chat_input, chatbot],
|
252 |
-
outputs=[chat_input, chatbot],
|
253 |
-
)
|
254 |
-
|
255 |
-
clear_btn.click(lambda: None, outputs=[chatbot])
|
256 |
-
|
257 |
-
gr.Examples(
|
258 |
-
examples=[
|
259 |
-
[
|
260 |
-
"https://huggingface.co/spaces/username/your-space-name/resolve/main/examples/polluted_river_1.jpg"
|
261 |
-
],
|
262 |
-
[
|
263 |
-
"https://huggingface.co/spaces/username/your-space-name/resolve/main/examples/polluted_river_2.jpg"
|
264 |
-
],
|
265 |
-
],
|
266 |
-
inputs=image_input,
|
267 |
-
outputs=analysis_output,
|
268 |
-
fn=analyzer.analyze_image,
|
269 |
-
cache_examples=True,
|
270 |
-
label="Try example images:",
|
271 |
-
)
|
272 |
-
|
273 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|