Spaces:
Runtime error
Runtime error
""" | |
Born out of Depth Anything V1 Issue 36 | |
Make sure you have the necessary libraries installed. | |
Code by @1ssb | |
This script processes a set of images to generate depth maps and corresponding point clouds. | |
The resulting point clouds are saved in the specified output directory. | |
Usage: | |
python script.py --encoder vitl --load-from path_to_model --max-depth 20 --img-path path_to_images --outdir output_directory --focal-length-x 470.4 --focal-length-y 470.4 | |
Arguments: | |
--encoder: Model encoder to use. Choices are ['vits', 'vitb', 'vitl', 'vitg']. | |
--load-from: Path to the pre-trained model weights. | |
--max-depth: Maximum depth value for the depth map. | |
--img-path: Path to the input image or directory containing images. | |
--outdir: Directory to save the output point clouds. | |
--focal-length-x: Focal length along the x-axis. | |
--focal-length-y: Focal length along the y-axis. | |
""" | |
import argparse | |
import cv2 | |
import glob | |
import numpy as np | |
import open3d as o3d | |
import os | |
from PIL import Image | |
import torch | |
from depth_anything_v2.dpt import DepthAnythingV2 | |
def main(): | |
# Parse command-line arguments | |
parser = argparse.ArgumentParser(description='Generate depth maps and point clouds from images.') | |
parser.add_argument('--encoder', default='vitl', type=str, choices=['vits', 'vitb', 'vitl', 'vitg'], | |
help='Model encoder to use.') | |
parser.add_argument('--load-from', default='', type=str, required=True, | |
help='Path to the pre-trained model weights.') | |
parser.add_argument('--max-depth', default=20, type=float, | |
help='Maximum depth value for the depth map.') | |
parser.add_argument('--img-path', type=str, required=True, | |
help='Path to the input image or directory containing images.') | |
parser.add_argument('--outdir', type=str, default='./vis_pointcloud', | |
help='Directory to save the output point clouds.') | |
parser.add_argument('--focal-length-x', default=470.4, type=float, | |
help='Focal length along the x-axis.') | |
parser.add_argument('--focal-length-y', default=470.4, type=float, | |
help='Focal length along the y-axis.') | |
args = parser.parse_args() | |
# Determine the device to use (CUDA, MPS, or CPU) | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' | |
# Model configuration based on the chosen encoder | |
model_configs = { | |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, | |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} | |
} | |
# Initialize the DepthAnythingV2 model with the specified configuration | |
depth_anything = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth}) | |
depth_anything.load_state_dict(torch.load(args.load_from, map_location='cpu')) | |
depth_anything = depth_anything.to(DEVICE).eval() | |
# Get the list of image files to process | |
if os.path.isfile(args.img_path): | |
if args.img_path.endswith('txt'): | |
with open(args.img_path, 'r') as f: | |
filenames = f.read().splitlines() | |
else: | |
filenames = [args.img_path] | |
else: | |
filenames = glob.glob(os.path.join(args.img_path, '**/*'), recursive=True) | |
# Create the output directory if it doesn't exist | |
os.makedirs(args.outdir, exist_ok=True) | |
# Process each image file | |
for k, filename in enumerate(filenames): | |
print(f'Processing {k+1}/{len(filenames)}: {filename}') | |
# Load the image | |
color_image = Image.open(filename).convert('RGB') | |
width, height = color_image.size | |
# Read the image using OpenCV | |
image = cv2.imread(filename) | |
pred = depth_anything.infer_image(image, height) | |
# Resize depth prediction to match the original image size | |
resized_pred = Image.fromarray(pred).resize((width, height), Image.NEAREST) | |
# Generate mesh grid and calculate point cloud coordinates | |
x, y = np.meshgrid(np.arange(width), np.arange(height)) | |
x = (x - width / 2) / args.focal_length_x | |
y = (y - height / 2) / args.focal_length_y | |
z = np.array(resized_pred) | |
points = np.stack((np.multiply(x, z), np.multiply(y, z), z), axis=-1).reshape(-1, 3) | |
colors = np.array(color_image).reshape(-1, 3) / 255.0 | |
# Create the point cloud and save it to the output directory | |
pcd = o3d.geometry.PointCloud() | |
pcd.points = o3d.utility.Vector3dVector(points) | |
pcd.colors = o3d.utility.Vector3dVector(colors) | |
o3d.io.write_point_cloud(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + ".ply"), pcd) | |
if __name__ == '__main__': | |
main() | |