""" Born out of Depth Anything V1 Issue 36 Make sure you have the necessary libraries installed. Code by @1ssb This script processes a set of images to generate depth maps and corresponding point clouds. The resulting point clouds are saved in the specified output directory. Usage: python script.py --encoder vitl --load-from path_to_model --max-depth 20 --img-path path_to_images --outdir output_directory --focal-length-x 470.4 --focal-length-y 470.4 Arguments: --encoder: Model encoder to use. Choices are ['vits', 'vitb', 'vitl', 'vitg']. --load-from: Path to the pre-trained model weights. --max-depth: Maximum depth value for the depth map. --img-path: Path to the input image or directory containing images. --outdir: Directory to save the output point clouds. --focal-length-x: Focal length along the x-axis. --focal-length-y: Focal length along the y-axis. """ import argparse import cv2 import glob import numpy as np import open3d as o3d import os from PIL import Image import torch from depth_anything_v2.dpt import DepthAnythingV2 def main(): # Parse command-line arguments parser = argparse.ArgumentParser(description='Generate depth maps and point clouds from images.') parser.add_argument('--encoder', default='vitl', type=str, choices=['vits', 'vitb', 'vitl', 'vitg'], help='Model encoder to use.') parser.add_argument('--load-from', default='', type=str, required=True, help='Path to the pre-trained model weights.') parser.add_argument('--max-depth', default=20, type=float, help='Maximum depth value for the depth map.') parser.add_argument('--img-path', type=str, required=True, help='Path to the input image or directory containing images.') parser.add_argument('--outdir', type=str, default='./vis_pointcloud', help='Directory to save the output point clouds.') parser.add_argument('--focal-length-x', default=470.4, type=float, help='Focal length along the x-axis.') parser.add_argument('--focal-length-y', default=470.4, type=float, help='Focal length along the y-axis.') args = parser.parse_args() # Determine the device to use (CUDA, MPS, or CPU) DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' # Model configuration based on the chosen encoder model_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} } # Initialize the DepthAnythingV2 model with the specified configuration depth_anything = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth}) depth_anything.load_state_dict(torch.load(args.load_from, map_location='cpu')) depth_anything = depth_anything.to(DEVICE).eval() # Get the list of image files to process if os.path.isfile(args.img_path): if args.img_path.endswith('txt'): with open(args.img_path, 'r') as f: filenames = f.read().splitlines() else: filenames = [args.img_path] else: filenames = glob.glob(os.path.join(args.img_path, '**/*'), recursive=True) # Create the output directory if it doesn't exist os.makedirs(args.outdir, exist_ok=True) # Process each image file for k, filename in enumerate(filenames): print(f'Processing {k+1}/{len(filenames)}: {filename}') # Load the image color_image = Image.open(filename).convert('RGB') width, height = color_image.size # Read the image using OpenCV image = cv2.imread(filename) pred = depth_anything.infer_image(image, height) # Resize depth prediction to match the original image size resized_pred = Image.fromarray(pred).resize((width, height), Image.NEAREST) # Generate mesh grid and calculate point cloud coordinates x, y = np.meshgrid(np.arange(width), np.arange(height)) x = (x - width / 2) / args.focal_length_x y = (y - height / 2) / args.focal_length_y z = np.array(resized_pred) points = np.stack((np.multiply(x, z), np.multiply(y, z), z), axis=-1).reshape(-1, 3) colors = np.array(color_image).reshape(-1, 3) / 255.0 # Create the point cloud and save it to the output directory pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) pcd.colors = o3d.utility.Vector3dVector(colors) o3d.io.write_point_cloud(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + ".ply"), pcd) if __name__ == '__main__': main()