Ashed00's picture
Create app.py
00a6112 verified
import gradio as gr
import lime
from lime.lime_text import LimeTextExplainer
import numpy as np
from datasets import load_dataset
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
import shap
import matplotlib.pyplot as plt
import io
from PIL import Image
import pandas as pd
# Load the IMDB dataset using Hugging Face datasets
dataset = load_dataset('imdb')
# Extract the training and test sets
text_train = [review['text'] for review in dataset['train']]
y_train = [review['label'] for review in dataset['train']]
text_test = [review['text'] for review in dataset['test']]
y_test = [review['label'] for review in dataset['test']]
# Convert the text data into a TF-IDF representation
vectorizer = TfidfVectorizer(stop_words='english', max_features=5000)
X_train = vectorizer.fit_transform(text_train)
X_test = vectorizer.transform(text_test)
# Split the training data into train and validation sets
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42)
# Train a logistic regression model
model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)
# Initialize LIME explainer
lime_explainer = LimeTextExplainer(class_names=['Negative', 'Positive'])
# Create a SHAP explainer object
shap_explainer = shap.LinearExplainer(model, X_train)
def explain_text(input_text):
# Predict label
input_vector = vectorizer.transform([input_text])
predicted_label = model.predict(input_vector)[0]
label_name = 'Positive' if predicted_label == 1 else 'Negative'
# LIME explanation
def predict_proba_for_lime(texts):
return model.predict_proba(vectorizer.transform(texts))
lime_exp = lime_explainer.explain_instance(input_text, predict_proba_for_lime, num_features=10)
lime_fig = lime_exp.as_pyplot_figure()
lime_img = fig_to_nparray(lime_fig)
# Get the complete HTML for LIME explanation
lime_html = lime_exp.as_html()
# SHAP explanation
shap_values = shap_explainer.shap_values(input_vector)[0]
feature_names = vectorizer.get_feature_names_out()
# Create a SHAP explanation object for the selected instance
shap_explanation = shap.Explanation(
values=shap_values,
base_values=shap_explainer.expected_value,
feature_names=feature_names,
data=input_vector.toarray()[0]
)
# Function to highlight text based on SHAP values
def highlight_text_shap(text, word_importances, feature_names, max_num_features):
words = text.split()
word_to_importance = {}
for idx, word in enumerate(feature_names):
if word in text.lower():
word_to_importance[word] = word_importances[idx]
sorted_word_importance = sorted(word_to_importance.items(), key=lambda x: abs(x[1]), reverse=True)[:max_num_features]
top_words = {word: importance for word, importance in sorted_word_importance}
highlighted_text = []
for word in words:
cleaned_word = ''.join(filter(str.isalnum, word)).lower()
if cleaned_word in top_words:
importance = top_words[cleaned_word]
color = 'red' if importance > 0 else 'blue'
highlighted_text.append(f'<span style="color:{color}">{word}</span>')
else:
highlighted_text.append(word)
return ' '.join(highlighted_text)
# Set the maximum number of features to display
max_num_features = 10
# Create a DataFrame for SHAP values
shap_df = pd.DataFrame({
'Feature': shap_explanation.feature_names,
'SHAP Value': shap_explanation.values
}).sort_values(by='SHAP Value', ascending=False).head(max_num_features)
# Plot the SHAP values
plt.figure(figsize=(10, 6))
plt.barh(shap_df['Feature'], shap_df['SHAP Value'], color=['red' if val > 0 else 'blue' for val in shap_df['SHAP Value']])
plt.xlabel('SHAP Value')
plt.title('Top 10 Feature Importance')
plt.tight_layout()
shap_fig = fig_to_nparray(plt.gcf())
# Highlight the text based on SHAP values
shap_highlighted_text = highlight_text_shap(input_text, shap_values, feature_names, max_num_features)
return label_name, lime_img, shap_fig, lime_html, shap_highlighted_text
def fig_to_nparray(fig):
"""Convert a matplotlib figure to a NumPy array."""
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
img = Image.open(buf)
return np.array(img)
# Create Gradio interface
iface = gr.Interface(
fn=explain_text,
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."),
outputs=[
gr.Label(label="Predicted Label"),
gr.Image(type="numpy", label="LIME Explanation"),
gr.Image(type="numpy", label="SHAP Explanation"),
gr.HTML(label="LIME Highlighted Text Explanation"),
gr.HTML(label="SHAP Highlighted Text Explanation"),
],
title="LIME and SHAP Explanations",
description="Enter a text sample to see its prediction and explanations using LIME and SHAP."
)
# Launch the interface
iface.launch()