import gradio as gr import lime from lime.lime_text import LimeTextExplainer import numpy as np from datasets import load_dataset from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.pipeline import make_pipeline import shap import matplotlib.pyplot as plt import io from PIL import Image import pandas as pd # Load the IMDB dataset using Hugging Face datasets dataset = load_dataset('imdb') # Extract the training and test sets text_train = [review['text'] for review in dataset['train']] y_train = [review['label'] for review in dataset['train']] text_test = [review['text'] for review in dataset['test']] y_test = [review['label'] for review in dataset['test']] # Convert the text data into a TF-IDF representation vectorizer = TfidfVectorizer(stop_words='english', max_features=5000) X_train = vectorizer.fit_transform(text_train) X_test = vectorizer.transform(text_test) # Split the training data into train and validation sets X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42) # Train a logistic regression model model = LogisticRegression(max_iter=1000) model.fit(X_train, y_train) # Initialize LIME explainer lime_explainer = LimeTextExplainer(class_names=['Negative', 'Positive']) # Create a SHAP explainer object shap_explainer = shap.LinearExplainer(model, X_train) def explain_text(input_text): # Predict label input_vector = vectorizer.transform([input_text]) predicted_label = model.predict(input_vector)[0] label_name = 'Positive' if predicted_label == 1 else 'Negative' # LIME explanation def predict_proba_for_lime(texts): return model.predict_proba(vectorizer.transform(texts)) lime_exp = lime_explainer.explain_instance(input_text, predict_proba_for_lime, num_features=10) lime_fig = lime_exp.as_pyplot_figure() lime_img = fig_to_nparray(lime_fig) # Get the complete HTML for LIME explanation lime_html = lime_exp.as_html() # SHAP explanation shap_values = shap_explainer.shap_values(input_vector)[0] feature_names = vectorizer.get_feature_names_out() # Create a SHAP explanation object for the selected instance shap_explanation = shap.Explanation( values=shap_values, base_values=shap_explainer.expected_value, feature_names=feature_names, data=input_vector.toarray()[0] ) # Function to highlight text based on SHAP values def highlight_text_shap(text, word_importances, feature_names, max_num_features): words = text.split() word_to_importance = {} for idx, word in enumerate(feature_names): if word in text.lower(): word_to_importance[word] = word_importances[idx] sorted_word_importance = sorted(word_to_importance.items(), key=lambda x: abs(x[1]), reverse=True)[:max_num_features] top_words = {word: importance for word, importance in sorted_word_importance} highlighted_text = [] for word in words: cleaned_word = ''.join(filter(str.isalnum, word)).lower() if cleaned_word in top_words: importance = top_words[cleaned_word] color = 'red' if importance > 0 else 'blue' highlighted_text.append(f'{word}') else: highlighted_text.append(word) return ' '.join(highlighted_text) # Set the maximum number of features to display max_num_features = 10 # Create a DataFrame for SHAP values shap_df = pd.DataFrame({ 'Feature': shap_explanation.feature_names, 'SHAP Value': shap_explanation.values }).sort_values(by='SHAP Value', ascending=False).head(max_num_features) # Plot the SHAP values plt.figure(figsize=(10, 6)) plt.barh(shap_df['Feature'], shap_df['SHAP Value'], color=['red' if val > 0 else 'blue' for val in shap_df['SHAP Value']]) plt.xlabel('SHAP Value') plt.title('Top 10 Feature Importance') plt.tight_layout() shap_fig = fig_to_nparray(plt.gcf()) # Highlight the text based on SHAP values shap_highlighted_text = highlight_text_shap(input_text, shap_values, feature_names, max_num_features) return label_name, lime_img, shap_fig, lime_html, shap_highlighted_text def fig_to_nparray(fig): """Convert a matplotlib figure to a NumPy array.""" buf = io.BytesIO() fig.savefig(buf, format='png') buf.seek(0) img = Image.open(buf) return np.array(img) # Create Gradio interface iface = gr.Interface( fn=explain_text, inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."), outputs=[ gr.Label(label="Predicted Label"), gr.Image(type="numpy", label="LIME Explanation"), gr.Image(type="numpy", label="SHAP Explanation"), gr.HTML(label="LIME Highlighted Text Explanation"), gr.HTML(label="SHAP Highlighted Text Explanation"), ], title="LIME and SHAP Explanations", description="Enter a text sample to see its prediction and explanations using LIME and SHAP." ) # Launch the interface iface.launch()