Spaces:
Running
Running
import os | |
import requests | |
import subprocess | |
import gradio as gr | |
# Token Hugging Face từ biến môi trường | |
hf_token = os.getenv("HF_TOKEN") | |
# URLs cần tải | |
app_url = "https://huggingface.co/datasets/ArrcttacsrjksX/Deffusion/resolve/main/RunModelAppp/App/sdRundeffusiononhuggingfacemaster-ac54e00" | |
model_url = "https://huggingface.co/datasets/ArrcttacsrjksX/Deffusion/resolve/main/Model/realisticVisionV60B1_v51HyperVAE.safetensors" | |
# Đường dẫn lưu file | |
app_path = "sdRundeffusiononhuggingfacemaster-ac54e00" | |
model_path = "realisticVisionV60B1_v51HyperVAE.safetensors" | |
# Hàm tải file từ Hugging Face | |
def download_file(url, output_path, token): | |
headers = {"Authorization": f"Bearer {token}"} | |
response = requests.get(url, headers=headers, stream=True) | |
response.raise_for_status() # Kiểm tra lỗi | |
with open(output_path, "wb") as f: | |
for chunk in response.iter_content(chunk_size=8192): | |
f.write(chunk) | |
print(f"Downloaded: {output_path}") | |
# Tải các file nếu chưa tồn tại | |
if not os.path.exists(app_path): | |
download_file(app_url, app_path, hf_token) | |
subprocess.run(["chmod", "+x", app_path]) # Thay đổi quyền thực thi | |
if not os.path.exists(model_path): | |
download_file(model_url, model_path, hf_token) | |
# Hàm xử lý chạy ứng dụng | |
def run_command(prompt, mode, height, width, steps, seed, init_image=None, threads=-1, weight_type="f32", negative_prompt="", cfg_scale=7.0, strength=0.75, style_ratio=0.2, control_strength=0.9, sampling_method="euler_a", batch_count=1, schedule="discrete", clip_skip=-1, vae_tiling=False, vae_on_cpu=False, clip_on_cpu=False, control_net_cpu=False, canny=False, color=False, verbose=False, rng="cuda"): | |
try: | |
# Lưu ảnh đầu vào nếu được cung cấp | |
init_image_path = None | |
if init_image is not None: | |
init_image_path = "input_image.png" | |
init_image.save(init_image_path) | |
# Tạo lệnh chạy | |
command = [ | |
f"./{app_path}", | |
"-M", mode, | |
"-m", model_path, | |
"-p", prompt, | |
"-H", str(height), | |
"-W", str(width), | |
"--steps", str(steps), | |
"-s", str(seed), | |
"-t", str(threads), | |
"--type", weight_type, | |
"--cfg-scale", str(cfg_scale), | |
"--strength", str(strength), | |
"--style-ratio", str(style_ratio), | |
"--control-strength", str(control_strength), | |
"--sampling-method", sampling_method, | |
"--batch-count", str(batch_count), | |
"--schedule", schedule, | |
"--clip-skip", str(clip_skip), | |
"--vae-tiling" if vae_tiling else None, | |
"--vae-on-cpu" if vae_on_cpu else None, | |
"--clip-on-cpu" if clip_on_cpu else None, | |
"--control-net-cpu" if control_net_cpu else None, | |
"--canny" if canny else None, | |
"--color" if color else None, | |
"-v" if verbose else None, | |
"--rng", rng | |
] | |
# Loại bỏ các giá trị None trong danh sách lệnh | |
command = [arg for arg in command if arg is not None] | |
# Thêm ảnh đầu vào nếu có | |
if mode == "img2img" and init_image_path: | |
command.extend(["-i", init_image_path]) | |
# Chạy lệnh và hiển thị log theo thời gian thực | |
process = subprocess.Popen( | |
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True | |
) | |
logs = [] | |
for line in process.stdout: | |
logs.append(line.strip()) # Lưu log vào danh sách | |
print(line, end="") # In log ra màn hình | |
process.wait() # Đợi tiến trình hoàn thành | |
# Kiểm tra kết quả và trả về | |
if process.returncode == 0: | |
output_path = "./output.png" # Đường dẫn ảnh đầu ra mặc định | |
return output_path if os.path.exists(output_path) else None, "\n".join(logs) | |
else: | |
error_log = process.stderr.read() # Đọc lỗi | |
logs.append(error_log) | |
return None, "\n".join(logs) | |
except Exception as e: | |
return None, str(e) | |
# Giao diện Gradio | |
def toggle_image_input(mode): | |
"""Hiển thị hoặc ẩn ô Drop Image dựa trên mode.""" | |
return gr.update(visible=(mode == "img2img")) | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown( | |
""" | |
# 🌟 **Stable Diffusion Interface** | |
Generate stunning images from text or modify existing images with AI-powered tools. | |
""" | |
) | |
# Thiết lập giao diện | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="🎨 Prompt", placeholder="Enter your creative idea here...", lines=2 | |
) | |
mode = gr.Radio( | |
choices=["txt2img", "img2img"], value="txt2img", label="Mode", interactive=True | |
) | |
init_image = gr.Image( | |
label="Drop Image (for img2img mode)", type="pil", visible=False | |
) | |
mode.change(toggle_image_input, inputs=mode, outputs=init_image) | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", placeholder="Anything to avoid in the image", lines=2 | |
) | |
threads = gr.Slider(-1, 64, value=-1, step=1, label="Threads", interactive=True) | |
weight_type = gr.Dropdown(choices=["f32", "f16", "q4_0", "q4_1", "q5_0", "q5_1", "q8_0", "q2_k", "q3_k", "q4_k"], value="f32", label="Weight Type") | |
cfg_scale = gr.Slider(0, 20, value=7.0, step=0.1, label="CFG Scale", interactive=True) | |
strength = gr.Slider(0, 1, value=0.75, step=0.01, label="Strength", interactive=True) | |
style_ratio = gr.Slider(0, 1, value=0.2, step=0.01, label="Style Ratio", interactive=True) | |
control_strength = gr.Slider(0, 1, value=0.9, step=0.01, label="Control Strength", interactive=True) | |
sampling_method = gr.Dropdown(choices=["euler", "euler_a", "heun", "dpm2", "dpm++2s_a", "dpm++2m", "dpm++2mv2", "ipndm", "ipndm_v", "lcm"], value="euler_a", label="Sampling Method") | |
batch_count = gr.Slider(1, 10, value=1, step=1, label="Batch Count", interactive=True) | |
schedule = gr.Dropdown(choices=["discrete", "karras", "exponential", "ays", "gits"], value="discrete", label="Denoiser Schedule") | |
clip_skip = gr.Slider(-1, 2, value=-1, step=1, label="Clip Skip", interactive=True) | |
vae_tiling = gr.Checkbox(label="VAE Tiling", interactive=True) | |
vae_on_cpu = gr.Checkbox(label="VAE on CPU", interactive=True) | |
clip_on_cpu = gr.Checkbox(label="CLIP on CPU", interactive=True) | |
control_net_cpu = gr.Checkbox(label="Control Net on CPU", interactive=True) | |
canny = gr.Checkbox(label="Apply Canny Preprocessor", interactive=True) | |
color = gr.Checkbox(label="Color Logs", interactive=True) | |
verbose = gr.Checkbox(label="Verbose Output", interactive=True) | |
rng = gr.Radio(choices=["std_default", "cuda"], value="cuda", label="Random Number Generator", interactive=True) | |
with gr.Column(): | |
height = gr.Slider( | |
128, 1024, value=512, step=64, label="Image Height (px)", interactive=True | |
) | |
width = gr.Slider( | |
128, 1024, value=512, step=64, label="Image Width (px)", interactive=True | |
) | |
steps = gr.Slider( | |
1, 100, value=20, step=1, label="Sampling Steps", interactive=True | |
) | |
seed = gr.Slider( | |
1, 10000, value=42, step=1, label="Seed", interactive=True | |
) | |
generate_btn = gr.Button("Run") | |
output_image = gr.Image(label="Generated Image") | |
logs_output = gr.Textbox(label="Logs", interactive=False, lines=15) | |
generate_btn.click( | |
run_command, | |
inputs=[ | |
prompt, mode, height, width, steps, seed, init_image, threads, weight_type, negative_prompt, | |
cfg_scale, strength, style_ratio, control_strength, sampling_method, batch_count, schedule, | |
clip_skip, vae_tiling, vae_on_cpu, clip_on_cpu, control_net_cpu, canny, color, verbose, rng | |
], | |
outputs=[output_image, logs_output], | |
) | |
demo.launch() | |