File size: 8,430 Bytes
8342297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import requests
import subprocess
import gradio as gr

# Token Hugging Face từ biến môi trường
hf_token = os.getenv("HF_TOKEN")

# URLs cần tải
app_url = "https://huggingface.co/datasets/ArrcttacsrjksX/Deffusion/resolve/main/RunModelAppp/App/sdRundeffusiononhuggingfacemaster-ac54e00"
model_url = "https://huggingface.co/datasets/ArrcttacsrjksX/Deffusion/resolve/main/Model/realisticVisionV60B1_v51HyperVAE.safetensors"

# Đường dẫn lưu file
app_path = "sdRundeffusiononhuggingfacemaster-ac54e00"
model_path = "realisticVisionV60B1_v51HyperVAE.safetensors"

# Hàm tải file từ Hugging Face
def download_file(url, output_path, token):
    headers = {"Authorization": f"Bearer {token}"}
    response = requests.get(url, headers=headers, stream=True)
    response.raise_for_status()  # Kiểm tra lỗi
    with open(output_path, "wb") as f:
        for chunk in response.iter_content(chunk_size=8192):
            f.write(chunk)
    print(f"Downloaded: {output_path}")

# Tải các file nếu chưa tồn tại
if not os.path.exists(app_path):
    download_file(app_url, app_path, hf_token)
    subprocess.run(["chmod", "+x", app_path])  # Thay đổi quyền thực thi

if not os.path.exists(model_path):
    download_file(model_url, model_path, hf_token)

# Hàm xử lý chạy ứng dụng
def run_command(prompt, mode, height, width, steps, seed, init_image=None, threads=-1, weight_type="f32", negative_prompt="", cfg_scale=7.0, strength=0.75, style_ratio=0.2, control_strength=0.9, sampling_method="euler_a", batch_count=1, schedule="discrete", clip_skip=-1, vae_tiling=False, vae_on_cpu=False, clip_on_cpu=False, control_net_cpu=False, canny=False, color=False, verbose=False, rng="cuda"):
    try:
        # Lưu ảnh đầu vào nếu được cung cấp
        init_image_path = None
        if init_image is not None:
            init_image_path = "input_image.png"
            init_image.save(init_image_path)

        # Tạo lệnh chạy
        command = [
            f"./{app_path}",
            "-M", mode,
            "-m", model_path,
            "-p", prompt,
            "-H", str(height),
            "-W", str(width),
            "--steps", str(steps),
            "-s", str(seed),
            "-t", str(threads),
            "--type", weight_type,
            "--cfg-scale", str(cfg_scale),
            "--strength", str(strength),
            "--style-ratio", str(style_ratio),
            "--control-strength", str(control_strength),
            "--sampling-method", sampling_method,
            "--batch-count", str(batch_count),
            "--schedule", schedule,
            "--clip-skip", str(clip_skip),
            "--vae-tiling" if vae_tiling else None,
            "--vae-on-cpu" if vae_on_cpu else None,
            "--clip-on-cpu" if clip_on_cpu else None,
            "--control-net-cpu" if control_net_cpu else None,
            "--canny" if canny else None,
            "--color" if color else None,
            "-v" if verbose else None,
            "--rng", rng
        ]
        
        # Loại bỏ các giá trị None trong danh sách lệnh
        command = [arg for arg in command if arg is not None]
        
        # Thêm ảnh đầu vào nếu có
        if mode == "img2img" and init_image_path:
            command.extend(["-i", init_image_path])

        # Chạy lệnh và hiển thị log theo thời gian thực
        process = subprocess.Popen(
            command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
        )
        logs = []
        for line in process.stdout:
            logs.append(line.strip())  # Lưu log vào danh sách
            print(line, end="")  # In log ra màn hình
        
        process.wait()  # Đợi tiến trình hoàn thành

        # Kiểm tra kết quả và trả về
        if process.returncode == 0:
            output_path = "./output.png"  # Đường dẫn ảnh đầu ra mặc định
            return output_path if os.path.exists(output_path) else None, "\n".join(logs)
        else:
            error_log = process.stderr.read()  # Đọc lỗi
            logs.append(error_log)
            return None, "\n".join(logs)
    except Exception as e:
        return None, str(e)

# Giao diện Gradio
def toggle_image_input(mode):
    """Hiển thị hoặc ẩn ô Drop Image dựa trên mode."""
    return gr.update(visible=(mode == "img2img"))

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # 🌟 **Stable Diffusion Interface**
        Generate stunning images from text or modify existing images with AI-powered tools.
        """
    )
    
    # Thiết lập giao diện
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(
                label="🎨 Prompt", placeholder="Enter your creative idea here...", lines=2
            )
            mode = gr.Radio(
                choices=["txt2img", "img2img"], value="txt2img", label="Mode", interactive=True
            )
            init_image = gr.Image(
                label="Drop Image (for img2img mode)", type="pil", visible=False
            )
            mode.change(toggle_image_input, inputs=mode, outputs=init_image)
            negative_prompt = gr.Textbox(
                label="Negative Prompt", placeholder="Anything to avoid in the image", lines=2
            )
            threads = gr.Slider(-1, 64, value=-1, step=1, label="Threads", interactive=True)
            weight_type = gr.Dropdown(choices=["f32", "f16", "q4_0", "q4_1", "q5_0", "q5_1", "q8_0", "q2_k", "q3_k", "q4_k"], value="f32", label="Weight Type")
            cfg_scale = gr.Slider(0, 20, value=7.0, step=0.1, label="CFG Scale", interactive=True)
            strength = gr.Slider(0, 1, value=0.75, step=0.01, label="Strength", interactive=True)
            style_ratio = gr.Slider(0, 1, value=0.2, step=0.01, label="Style Ratio", interactive=True)
            control_strength = gr.Slider(0, 1, value=0.9, step=0.01, label="Control Strength", interactive=True)
            sampling_method = gr.Dropdown(choices=["euler", "euler_a", "heun", "dpm2", "dpm++2s_a", "dpm++2m", "dpm++2mv2", "ipndm", "ipndm_v", "lcm"], value="euler_a", label="Sampling Method")
            batch_count = gr.Slider(1, 10, value=1, step=1, label="Batch Count", interactive=True)
            schedule = gr.Dropdown(choices=["discrete", "karras", "exponential", "ays", "gits"], value="discrete", label="Denoiser Schedule")
            clip_skip = gr.Slider(-1, 2, value=-1, step=1, label="Clip Skip", interactive=True)
            vae_tiling = gr.Checkbox(label="VAE Tiling", interactive=True)
            vae_on_cpu = gr.Checkbox(label="VAE on CPU", interactive=True)
            clip_on_cpu = gr.Checkbox(label="CLIP on CPU", interactive=True)
            control_net_cpu = gr.Checkbox(label="Control Net on CPU", interactive=True)
            canny = gr.Checkbox(label="Apply Canny Preprocessor", interactive=True)
            color = gr.Checkbox(label="Color Logs", interactive=True)
            verbose = gr.Checkbox(label="Verbose Output", interactive=True)
            rng = gr.Radio(choices=["std_default", "cuda"], value="cuda", label="Random Number Generator", interactive=True)

        with gr.Column():
            height = gr.Slider(
                128, 1024, value=512, step=64, label="Image Height (px)", interactive=True
            )
            width = gr.Slider(
                128, 1024, value=512, step=64, label="Image Width (px)", interactive=True
            )
            steps = gr.Slider(
                1, 100, value=20, step=1, label="Sampling Steps", interactive=True
            )
            seed = gr.Slider(
                1, 10000, value=42, step=1, label="Seed", interactive=True
            )

            generate_btn = gr.Button("Run")
            output_image = gr.Image(label="Generated Image")
            logs_output = gr.Textbox(label="Logs", interactive=False, lines=15)

    generate_btn.click(
        run_command,
        inputs=[
            prompt, mode, height, width, steps, seed, init_image, threads, weight_type, negative_prompt,
            cfg_scale, strength, style_ratio, control_strength, sampling_method, batch_count, schedule,
            clip_skip, vae_tiling, vae_on_cpu, clip_on_cpu, control_net_cpu, canny, color, verbose, rng
        ],
        outputs=[output_image, logs_output],
    )

demo.launch()