Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch.nn.functional as F | |
import spacy | |
from typing import List, Dict, Tuple | |
import logging | |
import os | |
import gradio as gr | |
from fastapi.middleware.cors import CORSMiddleware | |
from concurrent.futures import ThreadPoolExecutor | |
from functools import partial | |
import time | |
from datetime import datetime | |
import openpyxl | |
from openpyxl import Workbook | |
from openpyxl.utils import get_column_letter | |
from io import BytesIO | |
import base64 | |
import hashlib | |
import requests | |
import tempfile | |
from pathlib import Path | |
import mimetypes | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Constants | |
MAX_LENGTH = 512 | |
MODEL_NAME = "microsoft/deberta-v3-small" | |
WINDOW_SIZE = 6 | |
WINDOW_OVERLAP = 2 | |
CONFIDENCE_THRESHOLD = 0.65 | |
BATCH_SIZE = 8 # Reduced batch size for CPU | |
MAX_WORKERS = 4 # Number of worker threads for processing | |
# IMPORTANT: Set PyTorch thread configuration at the module level | |
# before any parallel work starts | |
if not torch.cuda.is_available(): | |
# Set thread configuration only once at the beginning | |
torch.set_num_threads(MAX_WORKERS) | |
try: | |
# Only set interop threads if it hasn't been set already | |
torch.set_num_interop_threads(MAX_WORKERS) | |
except RuntimeError as e: | |
logger.warning(f"Could not set interop threads: {str(e)}") | |
# Get password hash from environment variable (more secure) | |
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH') | |
if not ADMIN_PASSWORD_HASH: | |
ADMIN_PASSWORD_HASH = "5e22d1ed71b273b1b2b5331f2d3e0f6cf34595236f201c6924d6bc81de27cdcb" | |
# Excel file path for logs | |
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx" | |
# OCR API settings | |
OCR_API_KEY = "9e11346f1288957" # Now using the complete key | |
OCR_API_ENDPOINT = "https://api.ocr.space/parse/image" | |
OCR_MAX_PDF_PAGES = 3 | |
OCR_MAX_FILE_SIZE_MB = 1 | |
# Configure logging for OCR module | |
ocr_logger = logging.getLogger("ocr_module") | |
ocr_logger.setLevel(logging.INFO) | |
class OCRProcessor: | |
""" | |
Handles OCR processing of image and document files using OCR.space API | |
""" | |
def __init__(self, api_key: str = OCR_API_KEY): | |
self.api_key = api_key | |
self.endpoint = OCR_API_ENDPOINT | |
def process_file(self, file_path: str) -> Dict: | |
""" | |
Process a file using OCR.space API | |
""" | |
start_time = time.time() | |
ocr_logger.info(f"Starting OCR processing for file: {os.path.basename(file_path)}") | |
# Validate file size | |
file_size_mb = os.path.getsize(file_path) / (1024 * 1024) | |
if file_size_mb > OCR_MAX_FILE_SIZE_MB: | |
ocr_logger.warning(f"File size ({file_size_mb:.2f} MB) exceeds limit of {OCR_MAX_FILE_SIZE_MB} MB") | |
return { | |
"success": False, | |
"error": f"File size ({file_size_mb:.2f} MB) exceeds limit of {OCR_MAX_FILE_SIZE_MB} MB", | |
"text": "" | |
} | |
# Determine file type and handle accordingly | |
file_type = self._get_file_type(file_path) | |
ocr_logger.info(f"Detected file type: {file_type}") | |
# Set up API parameters | |
payload = { | |
'isOverlayRequired': 'false', | |
'language': 'eng', | |
'OCREngine': '2', # Use more accurate engine | |
'scale': 'true', | |
'detectOrientation': 'true', | |
} | |
# For PDF files, check page count limitations | |
if file_type == 'application/pdf': | |
ocr_logger.info("PDF document detected, enforcing page limit") | |
payload['filetype'] = 'PDF' | |
# Prepare file for OCR API - using file data as bytes to avoid file handle issues | |
with open(file_path, 'rb') as f: | |
file_data = f.read() | |
files = { | |
'file': (os.path.basename(file_path), file_data, file_type) | |
} | |
headers = { | |
'apikey': self.api_key, | |
} | |
# Make the OCR API request | |
try: | |
ocr_logger.info(f"Sending request to OCR.space API for file: {os.path.basename(file_path)}") | |
response = requests.post( | |
self.endpoint, | |
files=files, | |
data=payload, | |
headers=headers, | |
timeout=60 # Add 60 second timeout | |
) | |
ocr_logger.info(f"OCR API status code: {response.status_code}") | |
# Log response text for debugging (first 200 chars) | |
response_preview = response.text[:200] if hasattr(response, 'text') else "No text content" | |
ocr_logger.info(f"OCR API response preview: {response_preview}...") | |
try: | |
response.raise_for_status() | |
except Exception as e: | |
ocr_logger.error(f"HTTP Error: {str(e)}") | |
return { | |
"success": False, | |
"error": f"OCR API HTTP Error: {str(e)}", | |
"text": "" | |
} | |
try: | |
result = response.json() | |
ocr_logger.info(f"OCR API exit code: {result.get('OCRExitCode')}") | |
# Process the OCR results | |
if result.get('OCRExitCode') in [1, 2]: # Success or partial success | |
extracted_text = self._extract_text_from_result(result) | |
processing_time = time.time() - start_time | |
ocr_logger.info(f"OCR processing completed in {processing_time:.2f} seconds") | |
ocr_logger.info(f"Extracted text word count: {len(extracted_text.split())}") | |
return { | |
"success": True, | |
"text": extracted_text, | |
"word_count": len(extracted_text.split()), | |
"processing_time_ms": int(processing_time * 1000) | |
} | |
else: | |
error_msg = result.get('ErrorMessage', 'OCR processing failed') | |
ocr_logger.error(f"OCR API error: {error_msg}") | |
return { | |
"success": False, | |
"error": error_msg, | |
"text": "" | |
} | |
except ValueError as e: | |
ocr_logger.error(f"Invalid JSON response: {str(e)}") | |
return { | |
"success": False, | |
"error": f"Invalid response from OCR API: {str(e)}", | |
"text": "" | |
} | |
except requests.exceptions.RequestException as e: | |
ocr_logger.error(f"OCR API request failed: {str(e)}") | |
return { | |
"success": False, | |
"error": f"OCR API request failed: {str(e)}", | |
"text": "" | |
} | |
finally: | |
# No need to close file handle as we're using bytes directly | |
pass | |
def _extract_text_from_result(self, result: Dict) -> str: | |
""" | |
Extract all text from the OCR API result | |
""" | |
extracted_text = "" | |
if 'ParsedResults' in result and result['ParsedResults']: | |
for parsed_result in result['ParsedResults']: | |
if parsed_result.get('ParsedText'): | |
extracted_text += parsed_result['ParsedText'] | |
return extracted_text | |
def _get_file_type(self, file_path: str) -> str: | |
""" | |
Determine MIME type of a file | |
""" | |
mime_type, _ = mimetypes.guess_type(file_path) | |
if mime_type is None: | |
# Default to binary if MIME type can't be determined | |
return 'application/octet-stream' | |
return mime_type | |
def is_admin_password(input_text: str) -> bool: | |
""" | |
Check if the input text matches the admin password using secure hash comparison. | |
""" | |
# Hash the input text | |
input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest() | |
# Compare hashes (constant-time comparison to prevent timing attacks) | |
return input_hash == ADMIN_PASSWORD_HASH | |
class TextWindowProcessor: | |
def __init__(self): | |
try: | |
self.nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
logger.info("Downloading spacy model...") | |
spacy.cli.download("en_core_web_sm") | |
self.nlp = spacy.load("en_core_web_sm") | |
if 'sentencizer' not in self.nlp.pipe_names: | |
self.nlp.add_pipe('sentencizer') | |
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer'] | |
self.nlp.disable_pipes(*disabled_pipes) | |
# Initialize thread pool for parallel processing | |
self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS) | |
def split_into_sentences(self, text: str) -> List[str]: | |
doc = self.nlp(text) | |
return [str(sent).strip() for sent in doc.sents] | |
def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]: | |
if len(sentences) < window_size: | |
return [" ".join(sentences)] | |
windows = [] | |
stride = window_size - overlap | |
for i in range(0, len(sentences) - window_size + 1, stride): | |
window = sentences[i:i + window_size] | |
windows.append(" ".join(window)) | |
return windows | |
def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]: | |
"""Create windows with better boundary handling""" | |
windows = [] | |
window_sentence_indices = [] | |
for i in range(len(sentences)): | |
# Calculate window boundaries centered on current sentence | |
half_window = window_size // 2 | |
start_idx = max(0, i - half_window) | |
end_idx = min(len(sentences), i + half_window + 1) | |
# Create the window | |
window = sentences[start_idx:end_idx] | |
windows.append(" ".join(window)) | |
window_sentence_indices.append(list(range(start_idx, end_idx))) | |
return windows, window_sentence_indices | |
class TextClassifier: | |
def __init__(self): | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.model_name = MODEL_NAME | |
self.tokenizer = None | |
self.model = None | |
self.processor = TextWindowProcessor() | |
self.initialize_model() | |
def initialize_model(self): | |
"""Initialize the model and tokenizer.""" | |
logger.info("Initializing model and tokenizer...") | |
from transformers import DebertaV2TokenizerFast | |
self.tokenizer = DebertaV2TokenizerFast.from_pretrained( | |
self.model_name, | |
model_max_length=MAX_LENGTH, | |
use_fast=True | |
) | |
self.model = AutoModelForSequenceClassification.from_pretrained( | |
self.model_name, | |
num_labels=2 | |
).to(self.device) | |
model_path = "model_20250209_184929_acc1.0000.pt" | |
if os.path.exists(model_path): | |
logger.info(f"Loading custom model from {model_path}") | |
checkpoint = torch.load(model_path, map_location=self.device) | |
self.model.load_state_dict(checkpoint['model_state_dict']) | |
else: | |
logger.warning("Custom model file not found. Using base model.") | |
self.model.eval() | |
def quick_scan(self, text: str) -> Dict: | |
"""Perform a quick scan using simple window analysis.""" | |
if not text.strip(): | |
return { | |
'prediction': 'unknown', | |
'confidence': 0.0, | |
'num_windows': 0 | |
} | |
sentences = self.processor.split_into_sentences(text) | |
windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP) | |
predictions = [] | |
# Process windows in smaller batches for CPU efficiency | |
for i in range(0, len(windows), BATCH_SIZE): | |
batch_windows = windows[i:i + BATCH_SIZE] | |
inputs = self.tokenizer( | |
batch_windows, | |
truncation=True, | |
padding=True, | |
max_length=MAX_LENGTH, | |
return_tensors="pt" | |
).to(self.device) | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
probs = F.softmax(outputs.logits, dim=-1) | |
for idx, window in enumerate(batch_windows): | |
prediction = { | |
'window': window, | |
'human_prob': probs[idx][1].item(), | |
'ai_prob': probs[idx][0].item(), | |
'prediction': 'human' if probs[idx][1] > probs[idx][0] else 'ai' | |
} | |
predictions.append(prediction) | |
# Clean up GPU memory if available | |
del inputs, outputs, probs | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
if not predictions: | |
return { | |
'prediction': 'unknown', | |
'confidence': 0.0, | |
'num_windows': 0 | |
} | |
avg_human_prob = sum(p['human_prob'] for p in predictions) / len(predictions) | |
avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions) | |
return { | |
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai', | |
'confidence': max(avg_human_prob, avg_ai_prob), | |
'num_windows': len(predictions) | |
} | |
def detailed_scan(self, text: str) -> Dict: | |
"""Perform a detailed scan with improved sentence-level analysis.""" | |
# Clean up trailing whitespace | |
text = text.rstrip() | |
if not text.strip(): | |
return { | |
'sentence_predictions': [], | |
'highlighted_text': '', | |
'full_text': '', | |
'overall_prediction': { | |
'prediction': 'unknown', | |
'confidence': 0.0, | |
'num_sentences': 0 | |
} | |
} | |
sentences = self.processor.split_into_sentences(text) | |
if not sentences: | |
return {} | |
# Create centered windows for each sentence | |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE) | |
# Track scores for each sentence | |
sentence_appearances = {i: 0 for i in range(len(sentences))} | |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))} | |
# Process windows in batches | |
for i in range(0, len(windows), BATCH_SIZE): | |
batch_windows = windows[i:i + BATCH_SIZE] | |
batch_indices = window_sentence_indices[i:i + BATCH_SIZE] | |
inputs = self.tokenizer( | |
batch_windows, | |
truncation=True, | |
padding=True, | |
max_length=MAX_LENGTH, | |
return_tensors="pt" | |
).to(self.device) | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
probs = F.softmax(outputs.logits, dim=-1) | |
# Attribute predictions with weighted scoring | |
for window_idx, indices in enumerate(batch_indices): | |
center_idx = len(indices) // 2 | |
center_weight = 0.7 # Higher weight for center sentence | |
edge_weight = 0.3 / (len(indices) - 1) if len(indices) > 1 else 0 # Distribute remaining weight | |
for pos, sent_idx in enumerate(indices): | |
# Apply higher weight to center sentence | |
weight = center_weight if pos == center_idx else edge_weight | |
sentence_appearances[sent_idx] += weight | |
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item() | |
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item() | |
# Clean up memory | |
del inputs, outputs, probs | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
# Calculate final predictions with boundary smoothing | |
sentence_predictions = [] | |
for i in range(len(sentences)): | |
if sentence_appearances[i] > 0: | |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i] | |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i] | |
# Apply minimal smoothing at prediction boundaries | |
if i > 0 and i < len(sentences) - 1: | |
prev_human = sentence_scores[i-1]['human_prob'] / max(sentence_appearances[i-1], 1e-10) | |
prev_ai = sentence_scores[i-1]['ai_prob'] / max(sentence_appearances[i-1], 1e-10) | |
next_human = sentence_scores[i+1]['human_prob'] / max(sentence_appearances[i+1], 1e-10) | |
next_ai = sentence_scores[i+1]['ai_prob'] / max(sentence_appearances[i+1], 1e-10) | |
# Check if we're at a prediction boundary | |
current_pred = 'human' if human_prob > ai_prob else 'ai' | |
prev_pred = 'human' if prev_human > prev_ai else 'ai' | |
next_pred = 'human' if next_human > next_ai else 'ai' | |
if current_pred != prev_pred or current_pred != next_pred: | |
# Small adjustment at boundaries | |
smooth_factor = 0.1 | |
human_prob = (human_prob * (1 - smooth_factor) + | |
(prev_human + next_human) * smooth_factor / 2) | |
ai_prob = (ai_prob * (1 - smooth_factor) + | |
(prev_ai + next_ai) * smooth_factor / 2) | |
sentence_predictions.append({ | |
'sentence': sentences[i], | |
'human_prob': human_prob, | |
'ai_prob': ai_prob, | |
'prediction': 'human' if human_prob > ai_prob else 'ai', | |
'confidence': max(human_prob, ai_prob) | |
}) | |
return { | |
'sentence_predictions': sentence_predictions, | |
'highlighted_text': self.format_predictions_html(sentence_predictions), | |
'full_text': text, | |
'overall_prediction': self.aggregate_predictions(sentence_predictions) | |
} | |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str: | |
"""Format predictions as HTML with color-coding.""" | |
html_parts = [] | |
for pred in sentence_predictions: | |
sentence = pred['sentence'] | |
confidence = pred['confidence'] | |
if confidence >= CONFIDENCE_THRESHOLD: | |
if pred['prediction'] == 'human': | |
color = "#90EE90" # Light green | |
else: | |
color = "#FFB6C6" # Light red | |
else: | |
if pred['prediction'] == 'human': | |
color = "#E8F5E9" # Very light green | |
else: | |
color = "#FFEBEE" # Very light red | |
html_parts.append(f'<span style="background-color: {color};">{sentence}</span>') | |
return " ".join(html_parts) | |
def aggregate_predictions(self, predictions: List[Dict]) -> Dict: | |
"""Aggregate predictions from multiple sentences into a single prediction.""" | |
if not predictions: | |
return { | |
'prediction': 'unknown', | |
'confidence': 0.0, | |
'num_sentences': 0 | |
} | |
total_human_prob = sum(p['human_prob'] for p in predictions) | |
total_ai_prob = sum(p['ai_prob'] for p in predictions) | |
num_sentences = len(predictions) | |
avg_human_prob = total_human_prob / num_sentences | |
avg_ai_prob = total_ai_prob / num_sentences | |
return { | |
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai', | |
'confidence': max(avg_human_prob, avg_ai_prob), | |
'num_sentences': num_sentences | |
} | |
# Function to handle file upload, OCR processing, and text analysis | |
def handle_file_upload_and_analyze(file_obj, mode: str) -> tuple: | |
""" | |
Handle file upload, OCR processing, and text analysis | |
""" | |
# Use the global classifier | |
global classifier | |
classifier_to_use = classifier | |
if file_obj is None: | |
return ( | |
"No file uploaded", | |
"Please upload a file to analyze", | |
"No file uploaded for analysis" | |
) | |
# Log the type of file object received | |
logger.info(f"Received file upload of type: {type(file_obj)}") | |
try: | |
# Create a temporary file with an appropriate extension based on content | |
if isinstance(file_obj, bytes): | |
content_start = file_obj[:20] # Look at the first few bytes | |
# Default to .bin extension | |
file_ext = ".bin" | |
# Try to detect PDF files | |
if content_start.startswith(b'%PDF'): | |
file_ext = ".pdf" | |
# For images, detect by common magic numbers | |
elif content_start.startswith(b'\xff\xd8'): # JPEG | |
file_ext = ".jpg" | |
elif content_start.startswith(b'\x89PNG'): # PNG | |
file_ext = ".png" | |
elif content_start.startswith(b'GIF'): # GIF | |
file_ext = ".gif" | |
# Create a temporary file with the detected extension | |
with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as temp_file: | |
temp_file_path = temp_file.name | |
# Write uploaded file data to the temporary file | |
temp_file.write(file_obj) | |
logger.info(f"Saved uploaded file to {temp_file_path}") | |
else: | |
# Handle other file object types (should not typically happen with Gradio) | |
logger.error(f"Unexpected file object type: {type(file_obj)}") | |
return ( | |
"File upload error", | |
"Unexpected file format", | |
"Unable to process this file format" | |
) | |
# Process the file with OCR | |
ocr_processor = OCRProcessor() | |
logger.info(f"Starting OCR processing for file: {temp_file_path}") | |
ocr_result = ocr_processor.process_file(temp_file_path) | |
if not ocr_result["success"]: | |
logger.error(f"OCR processing failed: {ocr_result['error']}") | |
return ( | |
"OCR Processing Error", | |
ocr_result["error"], | |
"Failed to extract text from the uploaded file" | |
) | |
# Get the extracted text | |
extracted_text = ocr_result["text"] | |
logger.info(f"OCR processing complete. Extracted {len(extracted_text.split())} words") | |
# If no text was extracted | |
if not extracted_text.strip(): | |
logger.warning("No text extracted from file") | |
return ( | |
"No text extracted", | |
"The OCR process did not extract any text from the uploaded file.", | |
"No text was found in the uploaded file" | |
) | |
# Call the original text analysis function with the extracted text | |
logger.info("Proceeding with text analysis") | |
return analyze_text(extracted_text, mode, classifier_to_use) | |
except Exception as e: | |
logger.error(f"Error in file upload processing: {str(e)}") | |
return ( | |
"Error Processing File", | |
f"An error occurred while processing the file: {str(e)}", | |
"File processing error. Please try again or try a different file." | |
) | |
finally: | |
# Clean up the temporary file | |
if 'temp_file_path' in locals() and os.path.exists(temp_file_path): | |
try: | |
os.remove(temp_file_path) | |
logger.info(f"Removed temporary file: {temp_file_path}") | |
except Exception as e: | |
logger.warning(f"Could not remove temporary file: {str(e)}") | |
def initialize_excel_log(): | |
"""Initialize the Excel log file if it doesn't exist.""" | |
if not os.path.exists(EXCEL_LOG_PATH): | |
wb = Workbook() | |
ws = wb.active | |
ws.title = "Prediction Logs" | |
# Set column headers | |
headers = ["timestamp", "word_count", "prediction", "confidence", | |
"execution_time_ms", "analysis_mode", "full_text"] | |
for col_num, header in enumerate(headers, 1): | |
ws.cell(row=1, column=col_num, value=header) | |
# Adjust column widths for better readability | |
ws.column_dimensions[get_column_letter(1)].width = 20 # timestamp | |
ws.column_dimensions[get_column_letter(2)].width = 10 # word_count | |
ws.column_dimensions[get_column_letter(3)].width = 10 # prediction | |
ws.column_dimensions[get_column_letter(4)].width = 10 # confidence | |
ws.column_dimensions[get_column_letter(5)].width = 15 # execution_time_ms | |
ws.column_dimensions[get_column_letter(6)].width = 15 # analysis_mode | |
ws.column_dimensions[get_column_letter(7)].width = 100 # full_text | |
# Save the workbook | |
wb.save(EXCEL_LOG_PATH) | |
logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}") | |
def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode): | |
"""Log prediction data to an Excel file in the /tmp directory.""" | |
# Initialize the Excel file if it doesn't exist | |
if not os.path.exists(EXCEL_LOG_PATH): | |
initialize_excel_log() | |
try: | |
# Load the existing workbook | |
wb = openpyxl.load_workbook(EXCEL_LOG_PATH) | |
ws = wb.active | |
# Get the next row number | |
next_row = ws.max_row + 1 | |
# Clean up the input text for Excel storage (replace problematic characters) | |
cleaned_text = input_text.replace("\n", " ") | |
# Prepare row data | |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
row_data = [ | |
timestamp, | |
word_count, | |
prediction, | |
f"{confidence:.2f}", | |
f"{execution_time:.2f}", | |
mode, | |
cleaned_text | |
] | |
# Add the data to the worksheet | |
for col_num, value in enumerate(row_data, 1): | |
ws.cell(row=next_row, column=col_num, value=value) | |
# Save the workbook | |
wb.save(EXCEL_LOG_PATH) | |
logger.info(f"Successfully logged prediction data to {EXCEL_LOG_PATH}") | |
return True | |
except Exception as e: | |
logger.error(f"Error logging prediction data to Excel: {str(e)}") | |
return False | |
def get_logs_as_base64(): | |
"""Read the Excel logs file and return as base64 for downloading.""" | |
if not os.path.exists(EXCEL_LOG_PATH): | |
return None | |
try: | |
# Read the Excel file into memory | |
with open(EXCEL_LOG_PATH, "rb") as f: | |
file_data = f.read() | |
# Encode the file as base64 | |
base64_data = base64.b64encode(file_data).decode('utf-8') | |
return base64_data | |
except Exception as e: | |
logger.error(f"Error reading Excel logs: {str(e)}") | |
return None | |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple: | |
"""Analyze text using specified mode and return formatted results.""" | |
# Check if the input text matches the admin password using secure comparison | |
if is_admin_password(text.strip()): | |
# Return logs instead of analysis | |
base64_data = get_logs_as_base64() | |
logs_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
logs_filename = f"prediction_logs_{logs_timestamp}.xlsx" | |
if base64_data: | |
# Create downloadable HTML with the logs | |
html_content = f""" | |
<div style="background-color: #e6f7ff; padding: 15px; border-radius: 5px;"> | |
<h3>Admin Access Granted - Prediction Logs</h3> | |
<p>Logs retrieved at: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}</p> | |
<p>Excel file contains all prediction data with full text of all submissions.</p> | |
<a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{base64_data}" | |
download="{logs_filename}" | |
style="display: inline-block; margin-top: 10px; padding: 10px 15px; | |
background-color: #4CAF50; color: white; text-decoration: none; | |
border-radius: 4px;"> | |
Download Excel Logs | |
</a> | |
</div> | |
""" | |
else: | |
html_content = """ | |
<div style="background-color: #ffe6e6; padding: 15px; border-radius: 5px;"> | |
<h3>Admin Access Granted - No Logs Found</h3> | |
<p>No prediction logs were found or there was an error reading the logs file.</p> | |
</div> | |
""" | |
# Return special admin output instead of normal analysis | |
return ( | |
html_content, | |
f"Admin access granted. Logs retrieved at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", | |
f"ADMIN MODE\nLogs available for download\nFile: {EXCEL_LOG_PATH}" | |
) | |
# Start timing for normal analysis | |
start_time = time.time() | |
# Count words in the text | |
word_count = len(text.split()) | |
# If text is less than 200 words and detailed mode is selected, switch to quick mode | |
original_mode = mode | |
if word_count < 200 and mode == "detailed": | |
mode = "quick" | |
if mode == "quick": | |
result = classifier.quick_scan(text) | |
quick_analysis = f""" | |
PREDICTION: {result['prediction'].upper()} | |
Confidence: {result['confidence']*100:.1f}% | |
Windows analyzed: {result['num_windows']} | |
""" | |
# Add note if mode was switched | |
if original_mode == "detailed": | |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis." | |
# Calculate execution time in milliseconds | |
execution_time = (time.time() - start_time) * 1000 | |
# Log the prediction data | |
log_prediction_data( | |
input_text=text, | |
word_count=word_count, | |
prediction=result['prediction'], | |
confidence=result['confidence'], | |
execution_time=execution_time, | |
mode=original_mode | |
) | |
return ( | |
text, # No highlighting in quick mode | |
"Quick scan mode - no sentence-level analysis available", | |
quick_analysis | |
) | |
else: | |
analysis = classifier.detailed_scan(text) | |
detailed_analysis = [] | |
for pred in analysis['sentence_predictions']: | |
confidence = pred['confidence'] * 100 | |
detailed_analysis.append(f"Sentence: {pred['sentence']}") | |
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}") | |
detailed_analysis.append(f"Confidence: {confidence:.1f}%") | |
detailed_analysis.append("-" * 50) | |
final_pred = analysis['overall_prediction'] | |
overall_result = f""" | |
FINAL PREDICTION: {final_pred['prediction'].upper()} | |
Overall confidence: {final_pred['confidence']*100:.1f}% | |
Number of sentences analyzed: {final_pred['num_sentences']} | |
""" | |
# Calculate execution time in milliseconds | |
execution_time = (time.time() - start_time) * 1000 | |
# Log the prediction data | |
log_prediction_data( | |
input_text=text, | |
word_count=word_count, | |
prediction=final_pred['prediction'], | |
confidence=final_pred['confidence'], | |
execution_time=execution_time, | |
mode=original_mode | |
) | |
return ( | |
analysis['highlighted_text'], | |
"\n".join(detailed_analysis), | |
overall_result | |
) | |
# Initialize the classifier globally | |
classifier = TextClassifier() | |
# Create Gradio interface with a file upload button matched to the radio buttons | |
def create_interface(): | |
# Custom CSS for the interface | |
css = """ | |
#analyze-btn { | |
background-color: #FF8C00 !important; | |
border-color: #FF8C00 !important; | |
color: white !important; | |
} | |
/* Style the file upload to be more compact */ | |
.file-upload { | |
width: 150px !important; | |
margin-left: 15px !important; | |
} | |
/* Hide file preview elements */ | |
.file-upload .file-preview, | |
.file-upload p:not(.file-upload p:first-child), | |
.file-upload svg, | |
.file-upload [data-testid="chunkFileDropArea"], | |
.file-upload .file-drop { | |
display: none !important; | |
} | |
/* Style the upload button */ | |
.file-upload button { | |
height: 40px !important; | |
width: 100% !important; | |
background-color: #f0f0f0 !important; | |
border: 1px solid #d9d9d9 !important; | |
border-radius: 4px !important; | |
color: #333 !important; | |
font-size: 14px !important; | |
display: flex !important; | |
align-items: center !important; | |
justify-content: center !important; | |
margin: 0 !important; | |
padding: 0 !important; | |
} | |
/* Hide the "or" text */ | |
.file-upload .or { | |
display: none !important; | |
} | |
/* Make the container compact */ | |
.file-upload [data-testid="block"] { | |
margin: 0 !important; | |
padding: 0 !important; | |
} | |
""" | |
with gr.Blocks(css=css, title="AI Text Detector") as demo: | |
gr.Markdown("# AI Text Detector") | |
gr.Markdown("Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.") | |
with gr.Row(): | |
# Left column - Input | |
with gr.Column(scale=1): | |
# Text input area | |
text_input = gr.Textbox( | |
lines=8, | |
placeholder="Enter text to analyze...", | |
label="Input Text" | |
) | |
# Analysis Mode section | |
gr.Markdown("Analysis Mode") | |
gr.Markdown("Quick mode for faster analysis. Detailed mode for sentence-level analysis.") | |
# Simple row layout for radio buttons and file upload | |
with gr.Row(): | |
mode_selection = gr.Radio( | |
choices=["quick", "detailed"], | |
value="quick", | |
label="", | |
show_label=False | |
) | |
# Revert to File component but with better styling | |
file_upload = gr.File( | |
file_types=["image", "pdf", "doc", "docx"], | |
type="binary", | |
elem_classes=["file-upload"] | |
) | |
# Analyze button | |
analyze_btn = gr.Button("Analyze Text", elem_id="analyze-btn") | |
# Right column - Results | |
with gr.Column(scale=1): | |
output_html = gr.HTML(label="Highlighted Analysis") | |
output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10) | |
output_result = gr.Textbox(label="Overall Result", lines=4) | |
# Connect components | |
analyze_btn.click( | |
fn=lambda text, mode: analyze_text(text, mode, classifier), | |
inputs=[text_input, mode_selection], | |
outputs=[output_html, output_sentences, output_result] | |
) | |
# Use the file upload handler without passing classifier (will use global) | |
file_upload.change( | |
fn=handle_file_upload_and_analyze, | |
inputs=[file_upload, mode_selection], | |
outputs=[output_html, output_sentences, output_result] | |
) | |
return demo | |
# Setup the app with CORS middleware | |
def setup_app(): | |
demo = create_interface() | |
# Get the FastAPI app from Gradio | |
app = demo.app | |
# Add CORS middleware | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], # For development | |
allow_credentials=True, | |
allow_methods=["GET", "POST", "OPTIONS"], | |
allow_headers=["*"], | |
) | |
return demo | |
# Initialize the application | |
if __name__ == "__main__": | |
demo = setup_app() | |
# Start the server | |
demo.queue() | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=True | |
) |