File size: 37,307 Bytes
7eaaff0
ad52429
7b9d8b2
ad52429
7eaaff0
25f2b88
7eaaff0
 
ad52429
256b1d4
25f2b88
 
6fc3054
 
3282eb7
 
 
 
f1120bc
797026e
050caf8
 
 
 
41365d5
7eaaff0
 
 
 
ad52429
7eaaff0
 
59eee68
7eaaff0
 
25f2b88
 
7eaaff0
050caf8
 
 
 
 
 
 
 
 
 
 
797026e
 
 
 
 
aa57a4d
3282eb7
 
f1120bc
050caf8
c38f00e
050caf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d611c30
 
 
 
050caf8
d611c30
050caf8
 
 
 
 
 
 
 
c38f00e
050caf8
 
 
 
c38f00e
 
050caf8
c38f00e
 
 
 
d611c30
 
c38f00e
d611c30
 
 
 
 
 
 
 
 
050caf8
c38f00e
 
 
050caf8
c38f00e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
050caf8
 
c38f00e
050caf8
 
 
 
 
 
 
 
 
 
c38f00e
d611c30
c5610c9
050caf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797026e
 
 
 
 
 
 
 
 
 
ad52429
7eaaff0
 
 
 
 
ad52429
7eaaff0
 
 
 
 
 
 
25f2b88
 
 
7eaaff0
 
 
 
 
7b9d8b2
 
 
 
 
 
 
 
 
 
 
25f2b88
 
7eaaff0
 
1bb7d9d
7eaaff0
25f2b88
7eaaff0
 
 
1bb7d9d
25f2b88
7eaaff0
 
 
1bb7d9d
7eaaff0
 
ad52429
7eaaff0
53f5f55
ad52429
7eaaff0
 
ad52429
 
25f2b88
ad52429
 
 
 
 
 
 
 
 
25f2b88
ad52429
 
3fe982e
ad52429
0fc43d5
3fe982e
25f2b88
154774e
ad52429
 
3fe982e
 
ad52429
 
 
 
7b9d8b2
 
ad52429
 
 
 
 
 
 
7b9d8b2
 
 
 
 
ad52429
25f2b88
7b9d8b2
 
7eaaff0
7b9d8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25f2b88
 
 
 
 
7b9d8b2
7eaaff0
7b9d8b2
 
 
7eaaff0
 
7b9d8b2
 
 
 
 
 
 
 
 
444f8bc
 
99608c9
 
 
33fd63d
9a1a827
33fd63d
 
 
 
 
 
 
 
ad52429
444f8bc
33fd63d
 
 
444f8bc
33fd63d
 
444f8bc
33fd63d
 
 
444f8bc
33fd63d
444f8bc
 
 
 
33fd63d
 
 
 
 
 
 
444f8bc
33fd63d
 
 
444f8bc
33fd63d
 
 
 
050caf8
444f8bc
33fd63d
 
 
 
 
 
444f8bc
33fd63d
 
 
 
444f8bc
33fd63d
 
 
 
 
 
444f8bc
 
33fd63d
050caf8
 
 
 
444f8bc
33fd63d
 
 
 
444f8bc
33fd63d
 
 
 
 
 
 
444f8bc
33fd63d
 
 
 
 
 
 
444f8bc
33fd63d
 
 
 
 
 
1bb7d9d
ad52429
 
 
 
7eaaff0
 
 
ad52429
7eaaff0
 
ad52429
7eaaff0
ad52429
7eaaff0
 
ad52429
7eaaff0
ad52429
 
 
 
 
7eaaff0
ad52429
 
7eaaff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
050caf8
37dcbee
050caf8
 
 
37dcbee
 
 
 
050caf8
 
 
 
 
 
 
c38f00e
 
050caf8
 
c38f00e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
050caf8
 
c38f00e
050caf8
 
 
c38f00e
050caf8
 
 
 
 
 
 
 
c38f00e
050caf8
 
 
c38f00e
050caf8
 
 
 
 
 
 
c38f00e
37dcbee
050caf8
c38f00e
 
 
 
 
 
 
050caf8
 
c38f00e
 
 
 
 
 
050caf8
3282eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
050caf8
41365d5
3282eb7
 
 
 
41365d5
 
3282eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41365d5
3282eb7
41365d5
3282eb7
41365d5
6fc3054
050caf8
3282eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1120bc
050caf8
41365d5
 
797026e
 
f1120bc
3282eb7
f1120bc
3282eb7
f1120bc
3282eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1120bc
 
 
 
 
3282eb7
f1120bc
 
 
41365d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fc3054
1419b33
 
ad52429
7361b7e
050caf8
f61bc7a
050caf8
 
67d8613
050caf8
 
 
d00b248
67d8613
eec7a1b
67d8613
 
d00b248
 
67d8613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f61bc7a
67d8613
eec7a1b
f61bc7a
 
 
67d8613
 
f61bc7a
 
67d8613
 
f61bc7a
 
 
67d8613
 
 
 
d00b248
050caf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be06247
efc0c4a
 
 
f61bc7a
be06247
3a9ac67
 
 
 
 
 
d00b248
f61bc7a
 
 
 
 
 
050caf8
be06247
050caf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37dcbee
f61bc7a
 
050caf8
 
 
 
 
d00b248
050caf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eaaff0
050caf8
 
 
f69e7ad
d946b22
f69e7ad
d946b22
f69e7ad
d946b22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import spacy
from typing import List, Dict, Tuple
import logging
import os
import gradio as gr
from fastapi.middleware.cors import CORSMiddleware
from concurrent.futures import ThreadPoolExecutor
from functools import partial
import time
from datetime import datetime
import openpyxl
from openpyxl import Workbook
from openpyxl.utils import get_column_letter
from io import BytesIO
import base64
import hashlib
import requests
import tempfile
from pathlib import Path
import mimetypes

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
MAX_LENGTH = 512
MODEL_NAME = "microsoft/deberta-v3-small"
WINDOW_SIZE = 6
WINDOW_OVERLAP = 2
CONFIDENCE_THRESHOLD = 0.65
BATCH_SIZE = 8  # Reduced batch size for CPU
MAX_WORKERS = 4  # Number of worker threads for processing

# IMPORTANT: Set PyTorch thread configuration at the module level
# before any parallel work starts
if not torch.cuda.is_available():
    # Set thread configuration only once at the beginning
    torch.set_num_threads(MAX_WORKERS)
    try:
        # Only set interop threads if it hasn't been set already
        torch.set_num_interop_threads(MAX_WORKERS)
    except RuntimeError as e:
        logger.warning(f"Could not set interop threads: {str(e)}")

# Get password hash from environment variable (more secure)
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')

if not ADMIN_PASSWORD_HASH:
    ADMIN_PASSWORD_HASH = "5e22d1ed71b273b1b2b5331f2d3e0f6cf34595236f201c6924d6bc81de27cdcb"

# Excel file path for logs
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"

# OCR API settings
OCR_API_KEY = "9e11346f1288957"  # Now using the complete key
OCR_API_ENDPOINT = "https://api.ocr.space/parse/image"
OCR_MAX_PDF_PAGES = 3
OCR_MAX_FILE_SIZE_MB = 1

# Configure logging for OCR module
ocr_logger = logging.getLogger("ocr_module")
ocr_logger.setLevel(logging.INFO)

class OCRProcessor:
    """
    Handles OCR processing of image and document files using OCR.space API
    """
    def __init__(self, api_key: str = OCR_API_KEY):
        self.api_key = api_key
        self.endpoint = OCR_API_ENDPOINT
        
    def process_file(self, file_path: str) -> Dict:
        """
        Process a file using OCR.space API
        """
        start_time = time.time()
        ocr_logger.info(f"Starting OCR processing for file: {os.path.basename(file_path)}")
        
        # Validate file size
        file_size_mb = os.path.getsize(file_path) / (1024 * 1024)
        if file_size_mb > OCR_MAX_FILE_SIZE_MB:
            ocr_logger.warning(f"File size ({file_size_mb:.2f} MB) exceeds limit of {OCR_MAX_FILE_SIZE_MB} MB")
            return {
                "success": False,
                "error": f"File size ({file_size_mb:.2f} MB) exceeds limit of {OCR_MAX_FILE_SIZE_MB} MB",
                "text": ""
            }
        
        # Determine file type and handle accordingly
        file_type = self._get_file_type(file_path)
        ocr_logger.info(f"Detected file type: {file_type}")
        
        # Set up API parameters
        payload = {
            'isOverlayRequired': 'false',
            'language': 'eng',
            'OCREngine': '2',  # Use more accurate engine
            'scale': 'true',
            'detectOrientation': 'true',
        }
        
        # For PDF files, check page count limitations
        if file_type == 'application/pdf':
            ocr_logger.info("PDF document detected, enforcing page limit")
            payload['filetype'] = 'PDF'
        
        # Prepare file for OCR API - using file data as bytes to avoid file handle issues
        with open(file_path, 'rb') as f:
            file_data = f.read()
            
        files = {
            'file': (os.path.basename(file_path), file_data, file_type)
        }
        
        headers = {
            'apikey': self.api_key,
        }
        
        # Make the OCR API request
        try:
            ocr_logger.info(f"Sending request to OCR.space API for file: {os.path.basename(file_path)}")
            response = requests.post(
                self.endpoint, 
                files=files,
                data=payload,
                headers=headers,
                timeout=60  # Add 60 second timeout
            )
            
            ocr_logger.info(f"OCR API status code: {response.status_code}")
            
            # Log response text for debugging (first 200 chars)
            response_preview = response.text[:200] if hasattr(response, 'text') else "No text content"
            ocr_logger.info(f"OCR API response preview: {response_preview}...")
            
            try:
                response.raise_for_status()
            except Exception as e:
                ocr_logger.error(f"HTTP Error: {str(e)}")
                return {
                    "success": False,
                    "error": f"OCR API HTTP Error: {str(e)}",
                    "text": ""
                }
            
            try:
                result = response.json()
                ocr_logger.info(f"OCR API exit code: {result.get('OCRExitCode')}")
                
                # Process the OCR results
                if result.get('OCRExitCode') in [1, 2]:  # Success or partial success
                    extracted_text = self._extract_text_from_result(result)
                    processing_time = time.time() - start_time
                    ocr_logger.info(f"OCR processing completed in {processing_time:.2f} seconds")
                    ocr_logger.info(f"Extracted text word count: {len(extracted_text.split())}")
                    
                    return {
                        "success": True,
                        "text": extracted_text,
                        "word_count": len(extracted_text.split()),
                        "processing_time_ms": int(processing_time * 1000)
                    }
                else:
                    error_msg = result.get('ErrorMessage', 'OCR processing failed')
                    ocr_logger.error(f"OCR API error: {error_msg}")
                    return {
                        "success": False,
                        "error": error_msg,
                        "text": ""
                    }
            except ValueError as e:
                ocr_logger.error(f"Invalid JSON response: {str(e)}")
                return {
                    "success": False,
                    "error": f"Invalid response from OCR API: {str(e)}",
                    "text": ""
                }
                
        except requests.exceptions.RequestException as e:
            ocr_logger.error(f"OCR API request failed: {str(e)}")
            return {
                "success": False,
                "error": f"OCR API request failed: {str(e)}",
                "text": ""
            }
        finally:
            # No need to close file handle as we're using bytes directly
            pass
    
    def _extract_text_from_result(self, result: Dict) -> str:
        """
        Extract all text from the OCR API result
        """
        extracted_text = ""
        
        if 'ParsedResults' in result and result['ParsedResults']:
            for parsed_result in result['ParsedResults']:
                if parsed_result.get('ParsedText'):
                    extracted_text += parsed_result['ParsedText']
        
        return extracted_text
    
    def _get_file_type(self, file_path: str) -> str:
        """
        Determine MIME type of a file
        """
        mime_type, _ = mimetypes.guess_type(file_path)
        if mime_type is None:
            # Default to binary if MIME type can't be determined
            return 'application/octet-stream'
        return mime_type

def is_admin_password(input_text: str) -> bool:
    """
    Check if the input text matches the admin password using secure hash comparison.
    """
    # Hash the input text
    input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
    
    # Compare hashes (constant-time comparison to prevent timing attacks)
    return input_hash == ADMIN_PASSWORD_HASH

class TextWindowProcessor:
    def __init__(self):
        try:
            self.nlp = spacy.load("en_core_web_sm")
        except OSError:
            logger.info("Downloading spacy model...")
            spacy.cli.download("en_core_web_sm")
            self.nlp = spacy.load("en_core_web_sm")

        if 'sentencizer' not in self.nlp.pipe_names:
            self.nlp.add_pipe('sentencizer')

        disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
        self.nlp.disable_pipes(*disabled_pipes)
        
        # Initialize thread pool for parallel processing
        self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)

    def split_into_sentences(self, text: str) -> List[str]:
        doc = self.nlp(text)
        return [str(sent).strip() for sent in doc.sents]

    def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]:
        if len(sentences) < window_size:
            return [" ".join(sentences)]

        windows = []
        stride = window_size - overlap
        for i in range(0, len(sentences) - window_size + 1, stride):
            window = sentences[i:i + window_size]
            windows.append(" ".join(window))
        return windows

    def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]:
        """Create windows with better boundary handling"""
        windows = []
        window_sentence_indices = []

        for i in range(len(sentences)):
            # Calculate window boundaries centered on current sentence
            half_window = window_size // 2
            start_idx = max(0, i - half_window)
            end_idx = min(len(sentences), i + half_window + 1)

            # Create the window
            window = sentences[start_idx:end_idx]
            windows.append(" ".join(window))
            window_sentence_indices.append(list(range(start_idx, end_idx)))

        return windows, window_sentence_indices

class TextClassifier:
    def __init__(self):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model_name = MODEL_NAME
        self.tokenizer = None
        self.model = None
        self.processor = TextWindowProcessor()
        self.initialize_model()

    def initialize_model(self):
        """Initialize the model and tokenizer."""
        logger.info("Initializing model and tokenizer...")
        
        from transformers import DebertaV2TokenizerFast
        
        self.tokenizer = DebertaV2TokenizerFast.from_pretrained(
            self.model_name,
            model_max_length=MAX_LENGTH,
            use_fast=True
        )
        
        self.model = AutoModelForSequenceClassification.from_pretrained(
            self.model_name,
            num_labels=2
        ).to(self.device)
            
        model_path = "model_20250209_184929_acc1.0000.pt"
        if os.path.exists(model_path):
            logger.info(f"Loading custom model from {model_path}")
            checkpoint = torch.load(model_path, map_location=self.device)
            self.model.load_state_dict(checkpoint['model_state_dict'])
        else:
            logger.warning("Custom model file not found. Using base model.")
            
        self.model.eval()

    def quick_scan(self, text: str) -> Dict:
        """Perform a quick scan using simple window analysis."""
        if not text.strip():
            return {
                'prediction': 'unknown',
                'confidence': 0.0,
                'num_windows': 0
            }

        sentences = self.processor.split_into_sentences(text)
        windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP)

        predictions = []
        
        # Process windows in smaller batches for CPU efficiency
        for i in range(0, len(windows), BATCH_SIZE):
            batch_windows = windows[i:i + BATCH_SIZE]

            inputs = self.tokenizer(
                batch_windows,
                truncation=True,
                padding=True,
                max_length=MAX_LENGTH,
                return_tensors="pt"
            ).to(self.device)

            with torch.no_grad():
                outputs = self.model(**inputs)
                probs = F.softmax(outputs.logits, dim=-1)

                for idx, window in enumerate(batch_windows):
                    prediction = {
                        'window': window,
                        'human_prob': probs[idx][1].item(),
                        'ai_prob': probs[idx][0].item(),
                        'prediction': 'human' if probs[idx][1] > probs[idx][0] else 'ai'
                    }
                    predictions.append(prediction)

            # Clean up GPU memory if available
            del inputs, outputs, probs
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

        if not predictions:
            return {
                'prediction': 'unknown',
                'confidence': 0.0,
                'num_windows': 0
            }

        avg_human_prob = sum(p['human_prob'] for p in predictions) / len(predictions)
        avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions)

        return {
            'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
            'confidence': max(avg_human_prob, avg_ai_prob),
            'num_windows': len(predictions)
        }

    def detailed_scan(self, text: str) -> Dict:
        """Perform a detailed scan with improved sentence-level analysis."""
        # Clean up trailing whitespace
        text = text.rstrip()
        
        if not text.strip():
            return {
                'sentence_predictions': [],
                'highlighted_text': '',
                'full_text': '',
                'overall_prediction': {
                    'prediction': 'unknown',
                    'confidence': 0.0,
                    'num_sentences': 0
                }
            }

        sentences = self.processor.split_into_sentences(text)
        if not sentences:
            return {}

        # Create centered windows for each sentence
        windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)

        # Track scores for each sentence
        sentence_appearances = {i: 0 for i in range(len(sentences))}
        sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}

        # Process windows in batches
        for i in range(0, len(windows), BATCH_SIZE):
            batch_windows = windows[i:i + BATCH_SIZE]
            batch_indices = window_sentence_indices[i:i + BATCH_SIZE]

            inputs = self.tokenizer(
                batch_windows,
                truncation=True,
                padding=True,
                max_length=MAX_LENGTH,
                return_tensors="pt"
            ).to(self.device)

            with torch.no_grad():
                outputs = self.model(**inputs)
                probs = F.softmax(outputs.logits, dim=-1)

                # Attribute predictions with weighted scoring
                for window_idx, indices in enumerate(batch_indices):
                    center_idx = len(indices) // 2
                    center_weight = 0.7  # Higher weight for center sentence
                    edge_weight = 0.3 / (len(indices) - 1) if len(indices) > 1 else 0  # Distribute remaining weight

                    for pos, sent_idx in enumerate(indices):
                        # Apply higher weight to center sentence
                        weight = center_weight if pos == center_idx else edge_weight
                        sentence_appearances[sent_idx] += weight
                        sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
                        sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()

            # Clean up memory
            del inputs, outputs, probs
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

        # Calculate final predictions with boundary smoothing
        sentence_predictions = []
        for i in range(len(sentences)):
            if sentence_appearances[i] > 0:
                human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
                ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]

                # Apply minimal smoothing at prediction boundaries
                if i > 0 and i < len(sentences) - 1:
                    prev_human = sentence_scores[i-1]['human_prob'] / max(sentence_appearances[i-1], 1e-10)
                    prev_ai = sentence_scores[i-1]['ai_prob'] / max(sentence_appearances[i-1], 1e-10)
                    next_human = sentence_scores[i+1]['human_prob'] / max(sentence_appearances[i+1], 1e-10)
                    next_ai = sentence_scores[i+1]['ai_prob'] / max(sentence_appearances[i+1], 1e-10)

                    # Check if we're at a prediction boundary
                    current_pred = 'human' if human_prob > ai_prob else 'ai'
                    prev_pred = 'human' if prev_human > prev_ai else 'ai'
                    next_pred = 'human' if next_human > next_ai else 'ai'

                    if current_pred != prev_pred or current_pred != next_pred:
                        # Small adjustment at boundaries
                        smooth_factor = 0.1
                        human_prob = (human_prob * (1 - smooth_factor) + 
                                    (prev_human + next_human) * smooth_factor / 2)
                        ai_prob = (ai_prob * (1 - smooth_factor) + 
                                (prev_ai + next_ai) * smooth_factor / 2)

                sentence_predictions.append({
                    'sentence': sentences[i],
                    'human_prob': human_prob,
                    'ai_prob': ai_prob,
                    'prediction': 'human' if human_prob > ai_prob else 'ai',
                    'confidence': max(human_prob, ai_prob)
                })

        return {
            'sentence_predictions': sentence_predictions,
            'highlighted_text': self.format_predictions_html(sentence_predictions),
            'full_text': text,
            'overall_prediction': self.aggregate_predictions(sentence_predictions)
        }

    def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
        """Format predictions as HTML with color-coding."""
        html_parts = []
        
        for pred in sentence_predictions:
            sentence = pred['sentence']
            confidence = pred['confidence']
            
            if confidence >= CONFIDENCE_THRESHOLD:
                if pred['prediction'] == 'human':
                    color = "#90EE90"  # Light green
                else:
                    color = "#FFB6C6"  # Light red
            else:
                if pred['prediction'] == 'human':
                    color = "#E8F5E9"  # Very light green
                else:
                    color = "#FFEBEE"  # Very light red
                    
            html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
            
        return " ".join(html_parts)

    def aggregate_predictions(self, predictions: List[Dict]) -> Dict:
        """Aggregate predictions from multiple sentences into a single prediction."""
        if not predictions:
            return {
                'prediction': 'unknown',
                'confidence': 0.0,
                'num_sentences': 0
            }

        total_human_prob = sum(p['human_prob'] for p in predictions)
        total_ai_prob = sum(p['ai_prob'] for p in predictions)
        num_sentences = len(predictions)

        avg_human_prob = total_human_prob / num_sentences
        avg_ai_prob = total_ai_prob / num_sentences

        return {
            'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
            'confidence': max(avg_human_prob, avg_ai_prob),
            'num_sentences': num_sentences
        }

# Function to handle file upload, OCR processing, and text analysis
def handle_file_upload_and_analyze(file_obj, mode: str) -> tuple:
    """
    Handle file upload, OCR processing, and text analysis
    """
    # Use the global classifier
    global classifier
    classifier_to_use = classifier
        
    if file_obj is None:
        return (
            "No file uploaded",
            "Please upload a file to analyze",
            "No file uploaded for analysis"
        )
    
    # Log the type of file object received
    logger.info(f"Received file upload of type: {type(file_obj)}")
    
    try:
        # Create a temporary file with an appropriate extension based on content
        if isinstance(file_obj, bytes):
            content_start = file_obj[:20]  # Look at the first few bytes
            
            # Default to .bin extension
            file_ext = ".bin"
            
            # Try to detect PDF files
            if content_start.startswith(b'%PDF'):
                file_ext = ".pdf"
            # For images, detect by common magic numbers
            elif content_start.startswith(b'\xff\xd8'):  # JPEG
                file_ext = ".jpg"
            elif content_start.startswith(b'\x89PNG'):  # PNG
                file_ext = ".png"
            elif content_start.startswith(b'GIF'):      # GIF
                file_ext = ".gif"
            
            # Create a temporary file with the detected extension
            with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as temp_file:
                temp_file_path = temp_file.name
                # Write uploaded file data to the temporary file
                temp_file.write(file_obj)
                logger.info(f"Saved uploaded file to {temp_file_path}")
        else:
            # Handle other file object types (should not typically happen with Gradio)
            logger.error(f"Unexpected file object type: {type(file_obj)}")
            return (
                "File upload error",
                "Unexpected file format",
                "Unable to process this file format"
            )
        
        # Process the file with OCR
        ocr_processor = OCRProcessor()
        logger.info(f"Starting OCR processing for file: {temp_file_path}")
        ocr_result = ocr_processor.process_file(temp_file_path)
        
        if not ocr_result["success"]:
            logger.error(f"OCR processing failed: {ocr_result['error']}")
            return (
                "OCR Processing Error",
                ocr_result["error"],
                "Failed to extract text from the uploaded file"
            )
        
        # Get the extracted text
        extracted_text = ocr_result["text"]
        logger.info(f"OCR processing complete. Extracted {len(extracted_text.split())} words")
        
        # If no text was extracted
        if not extracted_text.strip():
            logger.warning("No text extracted from file")
            return (
                "No text extracted",
                "The OCR process did not extract any text from the uploaded file.",
                "No text was found in the uploaded file"
            )
        
        # Call the original text analysis function with the extracted text
        logger.info("Proceeding with text analysis")
        return analyze_text(extracted_text, mode, classifier_to_use)
    
    except Exception as e:
        logger.error(f"Error in file upload processing: {str(e)}")
        return (
            "Error Processing File",
            f"An error occurred while processing the file: {str(e)}",
            "File processing error. Please try again or try a different file."
        )
    finally:
        # Clean up the temporary file
        if 'temp_file_path' in locals() and os.path.exists(temp_file_path):
            try:
                os.remove(temp_file_path)
                logger.info(f"Removed temporary file: {temp_file_path}")
            except Exception as e:
                logger.warning(f"Could not remove temporary file: {str(e)}")

def initialize_excel_log():
    """Initialize the Excel log file if it doesn't exist."""
    if not os.path.exists(EXCEL_LOG_PATH):
        wb = Workbook()
        ws = wb.active
        ws.title = "Prediction Logs"
        
        # Set column headers
        headers = ["timestamp", "word_count", "prediction", "confidence", 
                   "execution_time_ms", "analysis_mode", "full_text"]
        
        for col_num, header in enumerate(headers, 1):
            ws.cell(row=1, column=col_num, value=header)
        
        # Adjust column widths for better readability
        ws.column_dimensions[get_column_letter(1)].width = 20  # timestamp
        ws.column_dimensions[get_column_letter(2)].width = 10  # word_count
        ws.column_dimensions[get_column_letter(3)].width = 10  # prediction
        ws.column_dimensions[get_column_letter(4)].width = 10  # confidence
        ws.column_dimensions[get_column_letter(5)].width = 15  # execution_time_ms
        ws.column_dimensions[get_column_letter(6)].width = 15  # analysis_mode
        ws.column_dimensions[get_column_letter(7)].width = 100  # full_text
            
        # Save the workbook
        wb.save(EXCEL_LOG_PATH)
        logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}")


def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
    """Log prediction data to an Excel file in the /tmp directory."""
    # Initialize the Excel file if it doesn't exist
    if not os.path.exists(EXCEL_LOG_PATH):
        initialize_excel_log()
    
    try:
        # Load the existing workbook
        wb = openpyxl.load_workbook(EXCEL_LOG_PATH)
        ws = wb.active
        
        # Get the next row number
        next_row = ws.max_row + 1
        
        # Clean up the input text for Excel storage (replace problematic characters)
        cleaned_text = input_text.replace("\n", " ")
        
        # Prepare row data
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        row_data = [
            timestamp, 
            word_count, 
            prediction, 
            f"{confidence:.2f}", 
            f"{execution_time:.2f}", 
            mode, 
            cleaned_text
        ]
        
        # Add the data to the worksheet
        for col_num, value in enumerate(row_data, 1):
            ws.cell(row=next_row, column=col_num, value=value)
        
        # Save the workbook
        wb.save(EXCEL_LOG_PATH)
        logger.info(f"Successfully logged prediction data to {EXCEL_LOG_PATH}")
        return True
        
    except Exception as e:
        logger.error(f"Error logging prediction data to Excel: {str(e)}")
        return False


def get_logs_as_base64():
    """Read the Excel logs file and return as base64 for downloading."""
    if not os.path.exists(EXCEL_LOG_PATH):
        return None
    
    try:
        # Read the Excel file into memory
        with open(EXCEL_LOG_PATH, "rb") as f:
            file_data = f.read()
        
        # Encode the file as base64
        base64_data = base64.b64encode(file_data).decode('utf-8')
        return base64_data
        
    except Exception as e:
        logger.error(f"Error reading Excel logs: {str(e)}")
        return None


def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
    """Analyze text using specified mode and return formatted results."""
    # Check if the input text matches the admin password using secure comparison
    if is_admin_password(text.strip()):
        # Return logs instead of analysis
        base64_data = get_logs_as_base64()
        logs_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        logs_filename = f"prediction_logs_{logs_timestamp}.xlsx"
        
        if base64_data:
            # Create downloadable HTML with the logs
            html_content = f"""
            <div style="background-color: #e6f7ff; padding: 15px; border-radius: 5px;">
                <h3>Admin Access Granted - Prediction Logs</h3>
                <p>Logs retrieved at: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}</p>
                <p>Excel file contains all prediction data with full text of all submissions.</p>
                <a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{base64_data}" 
                   download="{logs_filename}" 
                   style="display: inline-block; margin-top: 10px; padding: 10px 15px; 
                          background-color: #4CAF50; color: white; text-decoration: none; 
                          border-radius: 4px;">
                    Download Excel Logs
                </a>
            </div>
            """
        else:
            html_content = """
            <div style="background-color: #ffe6e6; padding: 15px; border-radius: 5px;">
                <h3>Admin Access Granted - No Logs Found</h3>
                <p>No prediction logs were found or there was an error reading the logs file.</p>
            </div>
            """
        
        # Return special admin output instead of normal analysis
        return (
            html_content,
            f"Admin access granted. Logs retrieved at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
            f"ADMIN MODE\nLogs available for download\nFile: {EXCEL_LOG_PATH}"
        )
        
    # Start timing for normal analysis
    start_time = time.time()
    
    # Count words in the text
    word_count = len(text.split())
    
    # If text is less than 200 words and detailed mode is selected, switch to quick mode
    original_mode = mode
    if word_count < 200 and mode == "detailed":
        mode = "quick"
    
    if mode == "quick":
        result = classifier.quick_scan(text)
        
        quick_analysis = f"""
        PREDICTION: {result['prediction'].upper()}
        Confidence: {result['confidence']*100:.1f}%
        Windows analyzed: {result['num_windows']}
        """
        
        # Add note if mode was switched
        if original_mode == "detailed":
            quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
        
        # Calculate execution time in milliseconds
        execution_time = (time.time() - start_time) * 1000
        
        # Log the prediction data
        log_prediction_data(
            input_text=text, 
            word_count=word_count, 
            prediction=result['prediction'], 
            confidence=result['confidence'],
            execution_time=execution_time,
            mode=original_mode
        )
        
        return (
            text,  # No highlighting in quick mode
            "Quick scan mode - no sentence-level analysis available",
            quick_analysis
        )
    else:
        analysis = classifier.detailed_scan(text)
        
        detailed_analysis = []
        for pred in analysis['sentence_predictions']:
            confidence = pred['confidence'] * 100
            detailed_analysis.append(f"Sentence: {pred['sentence']}")
            detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
            detailed_analysis.append(f"Confidence: {confidence:.1f}%")
            detailed_analysis.append("-" * 50)
        
        final_pred = analysis['overall_prediction']
        overall_result = f"""
        FINAL PREDICTION: {final_pred['prediction'].upper()}
        Overall confidence: {final_pred['confidence']*100:.1f}%
        Number of sentences analyzed: {final_pred['num_sentences']}
        """
        
        # Calculate execution time in milliseconds
        execution_time = (time.time() - start_time) * 1000
        
        # Log the prediction data
        log_prediction_data(
            input_text=text, 
            word_count=word_count, 
            prediction=final_pred['prediction'],
            confidence=final_pred['confidence'],
            execution_time=execution_time,
            mode=original_mode
        )
        
        return (
            analysis['highlighted_text'],
            "\n".join(detailed_analysis),
            overall_result
        )

# Initialize the classifier globally
classifier = TextClassifier()

# Create Gradio interface with a file upload button matched to the radio buttons
def create_interface():
    # Custom CSS for the interface
    css = """
    #analyze-btn {
        background-color: #FF8C00 !important;
        border-color: #FF8C00 !important;
        color: white !important;
    }
    
    /* Style the file upload to be more compact */
    .file-upload {
        width: 150px !important;
        margin-left: 15px !important;
    }
    
    /* Hide file preview elements */
    .file-upload .file-preview,
    .file-upload p:not(.file-upload p:first-child),
    .file-upload svg,
    .file-upload [data-testid="chunkFileDropArea"],
    .file-upload .file-drop {
        display: none !important;
    }
    
    /* Style the upload button */
    .file-upload button {
        height: 40px !important;
        width: 100% !important;
        background-color: #f0f0f0 !important;
        border: 1px solid #d9d9d9 !important;
        border-radius: 4px !important;
        color: #333 !important;
        font-size: 14px !important;
        display: flex !important;
        align-items: center !important;
        justify-content: center !important;
        margin: 0 !important;
        padding: 0 !important;
    }
    
    /* Hide the "or" text */
    .file-upload .or {
        display: none !important;
    }
    
    /* Make the container compact */
    .file-upload [data-testid="block"] {
        margin: 0 !important;
        padding: 0 !important;
    }
    """
    
    with gr.Blocks(css=css, title="AI Text Detector") as demo:
        gr.Markdown("# AI Text Detector")
        gr.Markdown("Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.")
        
        with gr.Row():
            # Left column - Input
            with gr.Column(scale=1):
                # Text input area
                text_input = gr.Textbox(
                    lines=8,
                    placeholder="Enter text to analyze...",
                    label="Input Text"
                )
                
                # Analysis Mode section
                gr.Markdown("Analysis Mode")
                gr.Markdown("Quick mode for faster analysis. Detailed mode for sentence-level analysis.")
                
                # Simple row layout for radio buttons and file upload
                with gr.Row():
                    mode_selection = gr.Radio(
                        choices=["quick", "detailed"],
                        value="quick",
                        label="",
                        show_label=False
                    )
                    
                    # Revert to File component but with better styling
                    file_upload = gr.File(
                        file_types=["image", "pdf", "doc", "docx"],
                        type="binary",
                        elem_classes=["file-upload"]
                    )
                
                # Analyze button
                analyze_btn = gr.Button("Analyze Text", elem_id="analyze-btn")
            
            # Right column - Results
            with gr.Column(scale=1):
                output_html = gr.HTML(label="Highlighted Analysis")
                output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
                output_result = gr.Textbox(label="Overall Result", lines=4)
        
        # Connect components
        analyze_btn.click(
            fn=lambda text, mode: analyze_text(text, mode, classifier),
            inputs=[text_input, mode_selection],
            outputs=[output_html, output_sentences, output_result]
        )
        
        # Use the file upload handler without passing classifier (will use global)
        file_upload.change(
            fn=handle_file_upload_and_analyze,
            inputs=[file_upload, mode_selection],
            outputs=[output_html, output_sentences, output_result]
        )
    
    return demo
    
# Setup the app with CORS middleware
def setup_app():
    demo = create_interface()
    
    # Get the FastAPI app from Gradio
    app = demo.app
    
    # Add CORS middleware
    app.add_middleware(
        CORSMiddleware,
        allow_origins=["*"],  # For development
        allow_credentials=True,
        allow_methods=["GET", "POST", "OPTIONS"],
        allow_headers=["*"],
    )
    
    return demo

# Initialize the application
if __name__ == "__main__":
    demo = setup_app()
    
    # Start the server
    demo.queue()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )