Resumeanalyser / app.py
Anushree1's picture
create app.py
c475914 verified
raw
history blame
1.88 kB
import gradio as gr
import pdfplumber
import spacy
from sentence_transformers import SentenceTransformer, util
# Load spaCy model and Sentence Transformer model
nlp = spacy.load('en_core_web_md')
model = SentenceTransformer('all-MiniLM-L6-v2')
def extract_text_from_pdf(pdf_path):
text = ''
with pdfplumber.open(pdf_path) as pdf:
for page in pdf.pages:
text += page.extract_text()
return text
def extract_text_from_txt(txt_path):
with open(txt_path, 'r') as file:
return file.read()
def analyze_resume(resume_file, job_description_file):
# Extract text from the PDF resume
resume_text = extract_text_from_pdf(resume_file.name)
# Extract text from the job description text file
job_description = extract_text_from_txt(job_description_file.name)
# Process the text with spaCy
doc = nlp(resume_text)
# Extract named entities from the resume
entities = [(ent.text, ent.label_) for ent in doc.ents]
# Get embeddings and compute similarity
resume_embedding = model.encode(resume_text)
job_description_embedding = model.encode(job_description)
similarity = util.pytorch_cos_sim(resume_embedding, job_description_embedding).item()
return entities, similarity, job_description
# Create a Gradio interface
iface = gr.Interface(
fn=analyze_resume,
inputs=[
gr.File(label="Upload Resume (PDF)"),
gr.File(label="Upload Job Description (TXT)")
],
outputs=[
gr.JSON(label="Extracted Entities"),
gr.Textbox(label="Resume and Job Description Similarity"),
gr.Textbox(label="Job Description Text", interactive=False)
],
title="Resume and Job Description Analyzer",
description="Upload your PDF resume and a TXT job description to extract entities and calculate similarity."
)
# Launch the interface
iface.launch()