Spaces:
Sleeping
Sleeping
create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pdfplumber
|
3 |
+
import spacy
|
4 |
+
from sentence_transformers import SentenceTransformer, util
|
5 |
+
|
6 |
+
# Load spaCy model and Sentence Transformer model
|
7 |
+
nlp = spacy.load('en_core_web_md')
|
8 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
9 |
+
|
10 |
+
def extract_text_from_pdf(pdf_path):
|
11 |
+
text = ''
|
12 |
+
with pdfplumber.open(pdf_path) as pdf:
|
13 |
+
for page in pdf.pages:
|
14 |
+
text += page.extract_text()
|
15 |
+
return text
|
16 |
+
|
17 |
+
def extract_text_from_txt(txt_path):
|
18 |
+
with open(txt_path, 'r') as file:
|
19 |
+
return file.read()
|
20 |
+
|
21 |
+
def analyze_resume(resume_file, job_description_file):
|
22 |
+
# Extract text from the PDF resume
|
23 |
+
resume_text = extract_text_from_pdf(resume_file.name)
|
24 |
+
|
25 |
+
# Extract text from the job description text file
|
26 |
+
job_description = extract_text_from_txt(job_description_file.name)
|
27 |
+
|
28 |
+
# Process the text with spaCy
|
29 |
+
doc = nlp(resume_text)
|
30 |
+
|
31 |
+
# Extract named entities from the resume
|
32 |
+
entities = [(ent.text, ent.label_) for ent in doc.ents]
|
33 |
+
|
34 |
+
# Get embeddings and compute similarity
|
35 |
+
resume_embedding = model.encode(resume_text)
|
36 |
+
job_description_embedding = model.encode(job_description)
|
37 |
+
similarity = util.pytorch_cos_sim(resume_embedding, job_description_embedding).item()
|
38 |
+
|
39 |
+
return entities, similarity, job_description
|
40 |
+
|
41 |
+
# Create a Gradio interface
|
42 |
+
iface = gr.Interface(
|
43 |
+
fn=analyze_resume,
|
44 |
+
inputs=[
|
45 |
+
gr.File(label="Upload Resume (PDF)"),
|
46 |
+
gr.File(label="Upload Job Description (TXT)")
|
47 |
+
],
|
48 |
+
outputs=[
|
49 |
+
gr.JSON(label="Extracted Entities"),
|
50 |
+
gr.Textbox(label="Resume and Job Description Similarity"),
|
51 |
+
gr.Textbox(label="Job Description Text", interactive=False)
|
52 |
+
],
|
53 |
+
title="Resume and Job Description Analyzer",
|
54 |
+
description="Upload your PDF resume and a TXT job description to extract entities and calculate similarity."
|
55 |
+
)
|
56 |
+
|
57 |
+
# Launch the interface
|
58 |
+
iface.launch()
|