Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
import os | |
import numpy as np | |
from deepface import DeepFace | |
# Define the folder path where images will be saved | |
dataset_path = "/content/dataset" # For Colab, this will save in your Colab environment | |
# Ensure the directory exists | |
if not os.path.exists(dataset_path): | |
os.makedirs(dataset_path) | |
# Function to capture, save image, and predict emotion | |
def capture_and_predict(image, name): | |
# Convert Gradio image (PIL format) to an OpenCV image | |
img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
# Analyze the emotion using DeepFace | |
result = DeepFace.analyze(img, actions=['emotion']) | |
# Get the dominant emotion | |
dominant_emotion = result[0]['dominant_emotion'] | |
# Save the image with a timestamp in the dataset folder | |
person_folder = os.path.join(dataset_path, name) | |
os.makedirs(person_folder, exist_ok=True) # Create a folder for each person if not exists | |
image_count = len(os.listdir(person_folder)) | |
image_path = os.path.join(person_folder, f"{image_count + 1}.jpg") | |
cv2.imwrite(image_path, cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # Save the image in RGB format for consistency | |
return f"Image saved for {name} with emotion: {dominant_emotion} at {image_path}" | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=capture_and_predict, | |
inputs=[gr.Image(type="pil"), gr.Textbox(label="Enter your name")], | |
outputs="text", | |
title="Capture and Predict Facial Emotion", | |
description="Capture an image from your webcam, enter your name, and the system will predict your emotion and save the image.", | |
live=True | |
) | |
# Launch the Gradio app | |
iface.launch() | |