import gradio as gr import cv2 import os import numpy as np from deepface import DeepFace # Define the folder path where images will be saved dataset_path = "/content/dataset" # For Colab, this will save in your Colab environment # Ensure the directory exists if not os.path.exists(dataset_path): os.makedirs(dataset_path) # Function to capture, save image, and predict emotion def capture_and_predict(image, name): # Convert Gradio image (PIL format) to an OpenCV image img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # Analyze the emotion using DeepFace result = DeepFace.analyze(img, actions=['emotion']) # Get the dominant emotion dominant_emotion = result[0]['dominant_emotion'] # Save the image with a timestamp in the dataset folder person_folder = os.path.join(dataset_path, name) os.makedirs(person_folder, exist_ok=True) # Create a folder for each person if not exists image_count = len(os.listdir(person_folder)) image_path = os.path.join(person_folder, f"{image_count + 1}.jpg") cv2.imwrite(image_path, cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # Save the image in RGB format for consistency return f"Image saved for {name} with emotion: {dominant_emotion} at {image_path}" # Define the Gradio interface iface = gr.Interface( fn=capture_and_predict, inputs=[gr.Image(type="pil"), gr.Textbox(label="Enter your name")], outputs="text", title="Capture and Predict Facial Emotion", description="Capture an image from your webcam, enter your name, and the system will predict your emotion and save the image.", live=True ) # Launch the Gradio app iface.launch()