Telecom-LLama / app.py
Anshul4150's picture
Update app.py
6678a75 verified
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Model ID
model_id = "apu20/Llama-3.2-3B-Instruct_Tele"
# Load quantized model (switch to 8-bit if needed)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16, # Use float16 for reduced memory footprint
device_map="cpu" # Force model to run on CPU
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Tokenize input
inputs = tokenizer(message, return_tensors="pt").to("cpu") # Ensure inputs are on CPU
# Generate response
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=max_tokens,
temperature=temperature,
top_p=top_p
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Gradio Chat Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()