Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
for val in history:
|
@@ -25,24 +27,23 @@ def respond(
|
|
25 |
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
42 |
|
43 |
-
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
@@ -59,6 +60,5 @@ demo = gr.ChatInterface(
|
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
+
# Model ID
|
6 |
+
model_id = "apu20/Llama-3.2-3B-Instruct_Tele"
|
|
|
|
|
7 |
|
8 |
+
# Load quantized model (switch to 8-bit if needed)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
model_id,
|
11 |
+
torch_dtype=torch.float16, # Use float16 for reduced memory footprint
|
12 |
+
device_map="cpu" # Force model to run on CPU
|
13 |
+
)
|
14 |
+
|
15 |
+
# Load tokenizer
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
17 |
|
18 |
+
|
19 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
messages = [{"role": "system", "content": system_message}]
|
21 |
|
22 |
for val in history:
|
|
|
27 |
|
28 |
messages.append({"role": "user", "content": message})
|
29 |
|
30 |
+
# Tokenize input
|
31 |
+
inputs = tokenizer(message, return_tensors="pt").to("cpu") # Ensure inputs are on CPU
|
32 |
|
33 |
+
# Generate response
|
34 |
+
with torch.no_grad():
|
35 |
+
outputs = model.generate(
|
36 |
+
**inputs,
|
37 |
+
max_length=max_tokens,
|
38 |
+
temperature=temperature,
|
39 |
+
top_p=top_p
|
40 |
+
)
|
41 |
|
42 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
+
return response
|
44 |
|
45 |
|
46 |
+
# Gradio Chat Interface
|
|
|
|
|
47 |
demo = gr.ChatInterface(
|
48 |
respond,
|
49 |
additional_inputs=[
|
|
|
60 |
],
|
61 |
)
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|