Spaces:
Runtime error
Runtime error
import numpy as np | |
from collections import OrderedDict, defaultdict | |
import json | |
import time | |
import copy | |
import multiprocessing as mp | |
from standalone_eval.utils import compute_average_precision_detection, \ | |
compute_temporal_iou_batch_cross, compute_temporal_iou_batch_paired, load_jsonl, get_ap | |
def compute_average_precision_detection_wrapper( | |
input_triple, tiou_thresholds=np.linspace(0.5, 0.95, 10)): | |
qid, ground_truth, prediction = input_triple | |
scores = compute_average_precision_detection( | |
ground_truth, prediction, tiou_thresholds=tiou_thresholds) | |
return qid, scores | |
def compute_mr_ap(submission, ground_truth, iou_thds=np.linspace(0.5, 0.95, 10), | |
max_gt_windows=None, max_pred_windows=10, num_workers=8, chunksize=50): | |
iou_thds = [float(f"{e:.2f}") for e in iou_thds] | |
pred_qid2data = defaultdict(list) | |
for d in submission: | |
pred_windows = d["pred_relevant_windows"][:max_pred_windows] \ | |
if max_pred_windows is not None else d["pred_relevant_windows"] | |
qid = d["qid"] | |
for w in pred_windows: | |
pred_qid2data[qid].append({ | |
"video-id": d["qid"], # in order to use the API | |
"t-start": w[0], | |
"t-end": w[1], | |
"score": w[2] | |
}) | |
gt_qid2data = defaultdict(list) | |
for d in ground_truth: | |
gt_windows = d["relevant_windows"][:max_gt_windows] \ | |
if max_gt_windows is not None else d["relevant_windows"] | |
qid = d["qid"] | |
for w in gt_windows: | |
gt_qid2data[qid].append({ | |
"video-id": d["qid"], | |
"t-start": w[0], | |
"t-end": w[1] | |
}) | |
qid2ap_list = {} | |
# start_time = time.time() | |
data_triples = [[qid, gt_qid2data[qid], pred_qid2data[qid]] for qid in pred_qid2data] | |
from functools import partial | |
compute_ap_from_triple = partial( | |
compute_average_precision_detection_wrapper, tiou_thresholds=iou_thds) | |
if num_workers > 1: | |
with mp.Pool(num_workers) as pool: | |
for qid, scores in pool.imap_unordered(compute_ap_from_triple, data_triples, chunksize=chunksize): | |
qid2ap_list[qid] = scores | |
else: | |
for data_triple in data_triples: | |
qid, scores = compute_ap_from_triple(data_triple) | |
qid2ap_list[qid] = scores | |
# print(f"compute_average_precision_detection {time.time() - start_time:.2f} seconds.") | |
ap_array = np.array(list(qid2ap_list.values())) # (#queries, #thd) | |
ap_thds = ap_array.mean(0) # mAP at different IoU thresholds. | |
iou_thd2ap = dict(zip([str(e) for e in iou_thds], ap_thds)) | |
iou_thd2ap["average"] = np.mean(ap_thds) | |
# formatting | |
iou_thd2ap = {k: float(f"{100 * v:.2f}") for k, v in iou_thd2ap.items()} | |
return iou_thd2ap | |
def compute_mr_r1(submission, ground_truth, iou_thds=np.linspace(0.5, 0.95, 10)): | |
"""If a predicted segment has IoU >= iou_thd with one of the 1st GT segment, we define it positive""" | |
iou_thds = [float(f"{e:.2f}") for e in iou_thds] | |
pred_qid2window = {d["qid"]: d["pred_relevant_windows"][0][:2] for d in submission} # :2 rm scores | |
# gt_qid2window = {d["qid"]: d["relevant_windows"][0] for d in ground_truth} | |
gt_qid2window = {} | |
for d in ground_truth: | |
cur_gt_windows = d["relevant_windows"] | |
cur_qid = d["qid"] | |
cur_max_iou_idx = 0 | |
if len(cur_gt_windows) > 0: # select the GT window that has the highest IoU | |
cur_ious = compute_temporal_iou_batch_cross( | |
np.array([pred_qid2window[cur_qid]]), np.array(d["relevant_windows"]) | |
)[0] | |
cur_max_iou_idx = np.argmax(cur_ious) | |
gt_qid2window[cur_qid] = cur_gt_windows[cur_max_iou_idx] | |
qids = list(pred_qid2window.keys()) | |
pred_windows = np.array([pred_qid2window[k] for k in qids]).astype(float) | |
gt_windows = np.array([gt_qid2window[k] for k in qids]).astype(float) | |
pred_gt_iou = compute_temporal_iou_batch_paired(pred_windows, gt_windows) | |
iou_thd2recall_at_one = {} | |
for thd in iou_thds: | |
iou_thd2recall_at_one[str(thd)] = float(f"{np.mean(pred_gt_iou >= thd) * 100:.2f}") | |
return iou_thd2recall_at_one | |
def get_window_len(window): | |
return window[1] - window[0] | |
def get_data_by_range(submission, ground_truth, len_range): | |
""" keep queries with ground truth window length in the specified length range. | |
Args: | |
submission: | |
ground_truth: | |
len_range: [min_l (int), max_l (int)]. the range is (min_l, max_l], i.e., min_l < l <= max_l | |
""" | |
min_l, max_l = len_range | |
if min_l == 0 and max_l == 150: # min and max l in dataset | |
return submission, ground_truth | |
# only keep ground truth with windows in the specified length range | |
# if multiple GT windows exists, we only keep the ones in the range | |
ground_truth_in_range = [] | |
gt_qids_in_range = set() | |
for d in ground_truth: | |
rel_windows_in_range = [ | |
w for w in d["relevant_windows"] if min_l < get_window_len(w) <= max_l] | |
if len(rel_windows_in_range) > 0: | |
d = copy.deepcopy(d) | |
d["relevant_windows"] = rel_windows_in_range | |
ground_truth_in_range.append(d) | |
gt_qids_in_range.add(d["qid"]) | |
# keep only submissions for ground_truth_in_range | |
submission_in_range = [] | |
for d in submission: | |
if d["qid"] in gt_qids_in_range: | |
submission_in_range.append(copy.deepcopy(d)) | |
return submission_in_range, ground_truth_in_range | |
def eval_moment_retrieval(submission, ground_truth, verbose=True): | |
length_ranges = [[0, 10], [10, 30], [30, 150], [0, 150], ] # | |
range_names = ["short", "middle", "long", "full"] | |
ret_metrics = {} | |
for l_range, name in zip(length_ranges, range_names): | |
if verbose: | |
start_time = time.time() | |
_submission, _ground_truth = get_data_by_range(submission, ground_truth, l_range) | |
print(f"{name}: {l_range}, {len(_ground_truth)}/{len(ground_truth)}=" | |
f"{100*len(_ground_truth)/len(ground_truth):.2f} examples.") | |
iou_thd2average_precision = compute_mr_ap(_submission, _ground_truth, num_workers=8, chunksize=50) | |
iou_thd2recall_at_one = compute_mr_r1(_submission, _ground_truth) | |
ret_metrics[name] = {"MR-mAP": iou_thd2average_precision, "MR-R1": iou_thd2recall_at_one} | |
if verbose: | |
print(f"[eval_moment_retrieval] [{name}] {time.time() - start_time:.2f} seconds") | |
return ret_metrics | |
def compute_hl_hit1(qid2preds, qid2gt_scores_binary): | |
qid2max_scored_clip_idx = {k: np.argmax(v["pred_saliency_scores"]) for k, v in qid2preds.items()} | |
hit_scores = np.zeros((len(qid2preds), 3)) | |
qids = list(qid2preds.keys()) | |
for idx, qid in enumerate(qids): | |
pred_clip_idx = qid2max_scored_clip_idx[qid] | |
gt_scores_binary = qid2gt_scores_binary[qid] # (#clips, 3) | |
if pred_clip_idx < len(gt_scores_binary): | |
hit_scores[idx] = gt_scores_binary[pred_clip_idx] | |
# aggregate scores from 3 separate annotations (3 workers) by taking the max. | |
# then average scores from all queries. | |
hit_at_one = float(f"{100 * np.mean(np.max(hit_scores, 1)):.2f}") | |
return hit_at_one | |
def compute_hl_ap(qid2preds, qid2gt_scores_binary, num_workers=8, chunksize=50): | |
qid2pred_scores = {k: v["pred_saliency_scores"] for k, v in qid2preds.items()} | |
ap_scores = np.zeros((len(qid2preds), 3)) # (#preds, 3) | |
qids = list(qid2preds.keys()) | |
input_tuples = [] | |
for idx, qid in enumerate(qids): | |
for w_idx in range(3): # annotation score idx | |
y_true = qid2gt_scores_binary[qid][:, w_idx] | |
y_predict = np.array(qid2pred_scores[qid]) | |
input_tuples.append((idx, w_idx, y_true, y_predict)) | |
if num_workers > 1: | |
with mp.Pool(num_workers) as pool: | |
for idx, w_idx, score in pool.imap_unordered( | |
compute_ap_from_tuple, input_tuples, chunksize=chunksize): | |
ap_scores[idx, w_idx] = score | |
else: | |
for input_tuple in input_tuples: | |
idx, w_idx, score = compute_ap_from_tuple(input_tuple) | |
ap_scores[idx, w_idx] = score | |
# it's the same if we first average across different annotations, then average across queries | |
# since all queries have the same #annotations. | |
mean_ap = float(f"{100 * np.mean(ap_scores):.2f}") | |
return mean_ap | |
def compute_ap_from_tuple(input_tuple): | |
idx, w_idx, y_true, y_predict = input_tuple | |
if len(y_true) < len(y_predict): | |
# print(f"len(y_true) < len(y_predict) {len(y_true), len(y_predict)}") | |
y_predict = y_predict[:len(y_true)] | |
elif len(y_true) > len(y_predict): | |
# print(f"len(y_true) > len(y_predict) {len(y_true), len(y_predict)}") | |
_y_predict = np.zeros(len(y_true)) | |
_y_predict[:len(y_predict)] = y_predict | |
y_predict = _y_predict | |
score = get_ap(y_true, y_predict) | |
return idx, w_idx, score | |
def mk_gt_scores(gt_data, clip_length=2): | |
"""gt_data, dict, """ | |
num_clips = int(gt_data["duration"] / clip_length) | |
saliency_scores_full_video = np.zeros((num_clips, 3)) | |
relevant_clip_ids = np.array(gt_data["relevant_clip_ids"]) # (#relevant_clip_ids, ) | |
saliency_scores_relevant_clips = np.array(gt_data["saliency_scores"]) # (#relevant_clip_ids, 3) | |
saliency_scores_full_video[relevant_clip_ids] = saliency_scores_relevant_clips | |
return saliency_scores_full_video # (#clips_in_video, 3) the scores are in range [0, 4] | |
def eval_highlight(submission, ground_truth, verbose=True): | |
""" | |
Args: | |
submission: | |
ground_truth: | |
verbose: | |
""" | |
qid2preds = {d["qid"]: d for d in submission} | |
qid2gt_scores_full_range = {d["qid"]: mk_gt_scores(d) for d in ground_truth} # scores in range [0, 4] | |
# gt_saliency_score_min: int, in [0, 1, 2, 3, 4]. The minimum score for a positive clip. | |
gt_saliency_score_min_list = [2, 3, 4] | |
saliency_score_names = ["Fair", "Good", "VeryGood"] | |
highlight_det_metrics = {} | |
for gt_saliency_score_min, score_name in zip(gt_saliency_score_min_list, saliency_score_names): | |
start_time = time.time() | |
qid2gt_scores_binary = { | |
k: (v >= gt_saliency_score_min).astype(float) | |
for k, v in qid2gt_scores_full_range.items()} # scores in [0, 1] | |
hit_at_one = compute_hl_hit1(qid2preds, qid2gt_scores_binary) | |
mean_ap = compute_hl_ap(qid2preds, qid2gt_scores_binary) | |
highlight_det_metrics[f"HL-min-{score_name}"] = {"HL-mAP": mean_ap, "HL-Hit1": hit_at_one} | |
if verbose: | |
print(f"Calculating highlight scores with min score {gt_saliency_score_min} ({score_name})") | |
print(f"Time cost {time.time() - start_time:.2f} seconds") | |
return highlight_det_metrics | |
def eval_submission(submission, ground_truth, verbose=True, match_number=True): | |
""" | |
Args: | |
submission: list(dict), each dict is { | |
qid: str, | |
query: str, | |
vid: str, | |
pred_relevant_windows: list([st, ed]), | |
pred_saliency_scores: list(float), len == #clips in video. | |
i.e., each clip in the video will have a saliency score. | |
} | |
ground_truth: list(dict), each dict is { | |
"qid": 7803, | |
"query": "Man in gray top walks from outside to inside.", | |
"duration": 150, | |
"vid": "RoripwjYFp8_360.0_510.0", | |
"relevant_clip_ids": [13, 14, 15, 16, 17] | |
"saliency_scores": [[4, 4, 2], [3, 4, 2], [2, 2, 3], [2, 2, 2], [0, 1, 3]] | |
each sublist corresponds to one clip in relevant_clip_ids. | |
The 3 elements in the sublist are scores from 3 different workers. The | |
scores are in [0, 1, 2, 3, 4], meaning [Very Bad, ..., Good, Very Good] | |
} | |
verbose: | |
match_number: | |
Returns: | |
""" | |
pred_qids = set([e["qid"] for e in submission]) | |
gt_qids = set([e["qid"] for e in ground_truth]) | |
if match_number: | |
assert pred_qids == gt_qids, \ | |
f"qids in ground_truth and submission must match. " \ | |
f"use `match_number=False` if you wish to disable this check" | |
else: # only leave the items that exists in both submission and ground_truth | |
shared_qids = pred_qids.intersection(gt_qids) | |
submission = [e for e in submission if e["qid"] in shared_qids] | |
ground_truth = [e for e in ground_truth if e["qid"] in shared_qids] | |
eval_metrics = {} | |
eval_metrics_brief = OrderedDict() | |
if "pred_relevant_windows" in submission[0]: | |
moment_ret_scores = eval_moment_retrieval( | |
submission, ground_truth, verbose=verbose) | |
eval_metrics.update(moment_ret_scores) | |
moment_ret_scores_brief = { | |
"MR-full-mAP": moment_ret_scores["full"]["MR-mAP"]["average"], | |
"[email protected]": moment_ret_scores["full"]["MR-mAP"]["0.5"], | |
"[email protected]": moment_ret_scores["full"]["MR-mAP"]["0.75"], | |
"MR-short-mAP": moment_ret_scores["short"]["MR-mAP"]["average"], | |
"MR-middle-mAP": moment_ret_scores["middle"]["MR-mAP"]["average"], | |
"MR-long-mAP": moment_ret_scores["long"]["MR-mAP"]["average"], | |
"[email protected]": moment_ret_scores["full"]["MR-R1"]["0.5"], | |
"[email protected]": moment_ret_scores["full"]["MR-R1"]["0.7"], | |
} | |
eval_metrics_brief.update( | |
sorted([(k, v) for k, v in moment_ret_scores_brief.items()], key=lambda x: x[0])) | |
if "pred_saliency_scores" in submission[0]: | |
highlight_det_scores = eval_highlight( | |
submission, ground_truth, verbose=verbose) | |
eval_metrics.update(highlight_det_scores) | |
highlight_det_scores_brief = dict([ | |
(f"{k}-{sub_k.split('-')[1]}", v[sub_k]) | |
for k, v in highlight_det_scores.items() for sub_k in v]) | |
eval_metrics_brief.update(highlight_det_scores_brief) | |
# sort by keys | |
final_eval_metrics = OrderedDict() | |
final_eval_metrics["brief"] = eval_metrics_brief | |
final_eval_metrics.update(sorted([(k, v) for k, v in eval_metrics.items()], key=lambda x: x[0])) | |
return final_eval_metrics | |
def eval_main(): | |
import argparse | |
parser = argparse.ArgumentParser(description="Moments and Highlights Evaluation Script") | |
parser.add_argument("--submission_path", type=str, help="path to generated prediction file") | |
parser.add_argument("--gt_path", type=str, help="path to GT file") | |
parser.add_argument("--save_path", type=str, help="path to save the results") | |
parser.add_argument("--not_verbose", action="store_true") | |
args = parser.parse_args() | |
verbose = not args.not_verbose | |
submission = load_jsonl(args.submission_path) | |
gt = load_jsonl(args.gt_path) | |
results = eval_submission(submission, gt, verbose=verbose) | |
if verbose: | |
print(json.dumps(results, indent=4)) | |
with open(args.save_path, "w") as f: | |
f.write(json.dumps(results, indent=4)) | |
if __name__ == '__main__': | |
eval_main() | |