Spaces:
Runtime error
Runtime error
File size: 13,676 Bytes
ef1c94f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import os
import time
import torch
import argparse
from utils.basic_utils import mkdirp, load_json, save_json, make_zipfile, dict_to_markdown
class BaseOptions(object):
saved_option_filename = "opt.json"
ckpt_filename = "model.ckpt"
tensorboard_log_dir = "tensorboard_log"
train_log_filename = "train.log.txt"
eval_log_filename = "eval.log.txt"
def __init__(self):
self.parser = None
self.initialized = False
self.opt = None
def initialize(self):
self.initialized = True
parser = argparse.ArgumentParser()
parser.add_argument("--dset_name", type=str, choices=["hl"])
parser.add_argument("--eval_split_name", type=str, default="val",
help="should match keys in video_duration_idx_path, must set for VCMR")
parser.add_argument("--debug", action="store_true",
help="debug (fast) mode, break all loops, do not load all data into memory.")
parser.add_argument("--data_ratio", type=float, default=1.0,
help="how many training and eval data to use. 1.0: use all, 0.1: use 10%."
"Use small portion for debug purposes. Note this is different from --debug, "
"which works by breaking the loops, typically they are not used together.")
parser.add_argument("--results_root", type=str, default="results")
parser.add_argument("--exp_id", type=str, default=None, help="id of this run, required at training")
parser.add_argument("--seed", type=int, default=2018, help="random seed")
parser.add_argument("--device", type=int, default=0, help="0 cuda, -1 cpu")
parser.add_argument("--num_workers", type=int, default=4,
help="num subprocesses used to load the data, 0: use main process")
parser.add_argument("--no_pin_memory", action="store_true",
help="Don't use pin_memory=True for dataloader. "
"ref: https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/4")
# training config
parser.add_argument("--lr", type=float, default=1e-4, help="learning rate")
parser.add_argument("--lr_drop", type=int, default=400, help="drop learning rate to 1/10 every lr_drop epochs")
parser.add_argument("--wd", type=float, default=1e-4, help="weight decay")
parser.add_argument("--n_epoch", type=int, default=200, help="number of epochs to run")
parser.add_argument("--max_es_cnt", type=int, default=200,
help="number of epochs to early stop, use -1 to disable early stop")
parser.add_argument("--bsz", type=int, default=32, help="mini-batch size")
parser.add_argument("--eval_bsz", type=int, default=100,
help="mini-batch size at inference, for query")
parser.add_argument("--grad_clip", type=float, default=0.1, help="perform gradient clip, -1: disable")
parser.add_argument("--eval_untrained", action="store_true", help="Evaluate on un-trained model")
parser.add_argument("--resume", type=str, default=None,
help="checkpoint path to resume or evaluate, without --resume_all this only load weights")
parser.add_argument("--resume_all", action="store_true",
help="if --resume_all, load optimizer/scheduler/epoch as well")
parser.add_argument("--start_epoch", type=int, default=None,
help="if None, will be set automatically when using --resume_all")
# Data config
parser.add_argument("--max_q_l", type=int, default=32)
parser.add_argument("--max_v_l", type=int, default=75)
parser.add_argument("--clip_length", type=int, default=2)
parser.add_argument("--max_windows", type=int, default=5)
parser.add_argument("--train_path", type=str, default=None)
parser.add_argument("--eval_path", type=str, default=None,
help="Evaluating during training, for Dev set. If None, will only do training, ")
parser.add_argument("--no_norm_vfeat", action="store_true", help="Do not do normalize video feat")
parser.add_argument("--no_norm_tfeat", action="store_true", help="Do not do normalize text feat")
parser.add_argument("--v_feat_dirs", type=str, nargs="+",
help="video feature dirs. If more than one, will concat their features. "
"Note that sub ctx features are also accepted here.")
parser.add_argument("--t_feat_dir", type=str, help="text/query feature dir")
parser.add_argument("--v_feat_dim", type=int, help="video feature dim")
parser.add_argument("--t_feat_dim", type=int, help="text/query feature dim")
parser.add_argument("--ctx_mode", type=str, default="video_tef")
# Model config
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=2, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=2, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=1024, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--input_dropout', default=0.5, type=float,
help="Dropout applied in input")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument("--txt_drop_ratio", default=0, type=float,
help="drop txt_drop_ratio tokens from text input. 0.1=10%")
parser.add_argument("--use_txt_pos", action="store_true", help="use position_embedding for text as well.")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=10, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# other model configs
parser.add_argument("--n_input_proj", type=int, default=2, help="#layers to encoder input")
parser.add_argument("--contrastive_hdim", type=int, default=64, help="dim for contrastive embeddings")
parser.add_argument("--temperature", type=float, default=0.07, help="temperature nce contrastive_align_loss")
# Loss
parser.add_argument("--lw_saliency", type=float, default=1.,
help="weight for saliency loss, set to 0 will ignore")
parser.add_argument("--saliency_margin", type=float, default=0.2)
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
parser.add_argument("--span_loss_type", default="l1", type=str, choices=['l1', 'ce'],
help="l1: (center-x, width) regression. ce: (st_idx, ed_idx) classification.")
parser.add_argument("--contrastive_align_loss", action="store_true",
help="Disable contrastive_align_loss between matched query spans and the text.")
# * Matcher
parser.add_argument('--set_cost_span', default=10, type=float,
help="L1 span coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=1, type=float,
help="giou span coefficient in the matching cost")
parser.add_argument('--set_cost_class', default=4, type=float,
help="Class coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--span_loss_coef', default=10, type=float)
parser.add_argument('--giou_loss_coef', default=1, type=float)
parser.add_argument('--label_loss_coef', default=4, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
parser.add_argument("--contrastive_align_loss_coef", default=0.0, type=float)
parser.add_argument("--no_sort_results", action="store_true",
help="do not sort results, use this for moment query visualization")
parser.add_argument("--max_before_nms", type=int, default=10)
parser.add_argument("--max_after_nms", type=int, default=10)
parser.add_argument("--conf_thd", type=float, default=0.0, help="only keep windows with conf >= conf_thd")
parser.add_argument("--nms_thd", type=float, default=-1,
help="additionally use non-maximum suppression "
"(or non-minimum suppression for distance)"
"to post-processing the predictions. "
"-1: do not use nms. [0, 1]")
self.parser = parser
def display_save(self, opt):
args = vars(opt)
# Display settings
print(dict_to_markdown(vars(opt), max_str_len=120))
# Save settings
if not isinstance(self, TestOptions):
option_file_path = os.path.join(opt.results_dir, self.saved_option_filename) # not yaml file indeed
save_json(args, option_file_path, save_pretty=True)
def parse(self):
if not self.initialized:
self.initialize()
opt = self.parser.parse_args()
if opt.debug:
opt.results_root = os.path.sep.join(opt.results_root.split(os.path.sep)[:-1] + ["debug_results", ])
opt.num_workers = 0
if isinstance(self, TestOptions):
# modify model_dir to absolute path
# opt.model_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "results", opt.model_dir)
opt.model_dir = os.path.dirname(opt.resume)
saved_options = load_json(os.path.join(opt.model_dir, self.saved_option_filename))
for arg in saved_options: # use saved options to overwrite all BaseOptions args.
if arg not in ["results_root", "num_workers", "nms_thd", "debug", # "max_before_nms", "max_after_nms"
"max_pred_l", "min_pred_l",
"resume", "resume_all", "no_sort_results"]:
setattr(opt, arg, saved_options[arg])
# opt.no_core_driver = True
if opt.eval_results_dir is not None:
opt.results_dir = opt.eval_results_dir
else:
if opt.exp_id is None:
raise ValueError("--exp_id is required for at a training option!")
ctx_str = opt.ctx_mode + "_sub" if any(["sub_ctx" in p for p in opt.v_feat_dirs]) else opt.ctx_mode
opt.results_dir = os.path.join(opt.results_root,
"-".join([opt.dset_name, ctx_str, opt.exp_id,
time.strftime("%Y_%m_%d_%H_%M_%S")]))
mkdirp(opt.results_dir)
# save a copy of current code
code_dir = os.path.dirname(os.path.realpath(__file__))
code_zip_filename = os.path.join(opt.results_dir, "code.zip")
make_zipfile(code_dir, code_zip_filename,
enclosing_dir="code",
exclude_dirs_substring="results",
exclude_dirs=["results", "debug_results", "__pycache__"],
exclude_extensions=[".pyc", ".ipynb", ".swap"], )
self.display_save(opt)
opt.ckpt_filepath = os.path.join(opt.results_dir, self.ckpt_filename)
opt.train_log_filepath = os.path.join(opt.results_dir, self.train_log_filename)
opt.eval_log_filepath = os.path.join(opt.results_dir, self.eval_log_filename)
opt.tensorboard_log_dir = os.path.join(opt.results_dir, self.tensorboard_log_dir)
opt.device = torch.device("cuda" if opt.device >= 0 else "cpu")
opt.pin_memory = not opt.no_pin_memory
opt.use_tef = "tef" in opt.ctx_mode
opt.use_video = "video" in opt.ctx_mode
if not opt.use_video:
opt.v_feat_dim = 0
if opt.use_tef:
opt.v_feat_dim += 2
self.opt = opt
return opt
class TestOptions(BaseOptions):
"""add additional options for evaluating"""
def initialize(self):
BaseOptions.initialize(self)
# also need to specify --eval_split_name
self.parser.add_argument("--eval_id", type=str, help="evaluation id")
self.parser.add_argument("--eval_results_dir", type=str, default=None,
help="dir to save results, if not set, fall back to training results_dir")
self.parser.add_argument("--model_dir", type=str,
help="dir contains the model file, will be converted to absolute path afterwards")
|