File size: 13,676 Bytes
ef1c94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import time
import torch
import argparse

from utils.basic_utils import mkdirp, load_json, save_json, make_zipfile, dict_to_markdown


class BaseOptions(object):
    saved_option_filename = "opt.json"
    ckpt_filename = "model.ckpt"
    tensorboard_log_dir = "tensorboard_log"
    train_log_filename = "train.log.txt"
    eval_log_filename = "eval.log.txt"

    def __init__(self):
        self.parser = None
        self.initialized = False
        self.opt = None

    def initialize(self):
        self.initialized = True
        parser = argparse.ArgumentParser()
        parser.add_argument("--dset_name", type=str, choices=["hl"])
        parser.add_argument("--eval_split_name", type=str, default="val",
                            help="should match keys in video_duration_idx_path, must set for VCMR")
        parser.add_argument("--debug", action="store_true",
                            help="debug (fast) mode, break all loops, do not load all data into memory.")
        parser.add_argument("--data_ratio", type=float, default=1.0,
                            help="how many training and eval data to use. 1.0: use all, 0.1: use 10%."
                                 "Use small portion for debug purposes. Note this is different from --debug, "
                                 "which works by breaking the loops, typically they are not used together.")
        parser.add_argument("--results_root", type=str, default="results")
        parser.add_argument("--exp_id", type=str, default=None, help="id of this run, required at training")
        parser.add_argument("--seed", type=int, default=2018, help="random seed")
        parser.add_argument("--device", type=int, default=0, help="0 cuda, -1 cpu")
        parser.add_argument("--num_workers", type=int, default=4,
                            help="num subprocesses used to load the data, 0: use main process")
        parser.add_argument("--no_pin_memory", action="store_true",
                            help="Don't use pin_memory=True for dataloader. "
                                 "ref: https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/4")

        # training config
        parser.add_argument("--lr", type=float, default=1e-4, help="learning rate")
        parser.add_argument("--lr_drop", type=int, default=400, help="drop learning rate to 1/10 every lr_drop epochs")
        parser.add_argument("--wd", type=float, default=1e-4, help="weight decay")
        parser.add_argument("--n_epoch", type=int, default=200, help="number of epochs to run")
        parser.add_argument("--max_es_cnt", type=int, default=200,
                            help="number of epochs to early stop, use -1 to disable early stop")
        parser.add_argument("--bsz", type=int, default=32, help="mini-batch size")
        parser.add_argument("--eval_bsz", type=int, default=100,
                            help="mini-batch size at inference, for query")
        parser.add_argument("--grad_clip", type=float, default=0.1, help="perform gradient clip, -1: disable")
        parser.add_argument("--eval_untrained", action="store_true", help="Evaluate on un-trained model")
        parser.add_argument("--resume", type=str, default=None,
                            help="checkpoint path to resume or evaluate, without --resume_all this only load weights")
        parser.add_argument("--resume_all", action="store_true",
                            help="if --resume_all, load optimizer/scheduler/epoch as well")
        parser.add_argument("--start_epoch", type=int, default=None,
                            help="if None, will be set automatically when using --resume_all")

        # Data config
        parser.add_argument("--max_q_l", type=int, default=32)
        parser.add_argument("--max_v_l", type=int, default=75)
        parser.add_argument("--clip_length", type=int, default=2)
        parser.add_argument("--max_windows", type=int, default=5)

        parser.add_argument("--train_path", type=str, default=None)
        parser.add_argument("--eval_path", type=str, default=None,
                            help="Evaluating during training, for Dev set. If None, will only do training, ")
        parser.add_argument("--no_norm_vfeat", action="store_true", help="Do not do normalize video feat")
        parser.add_argument("--no_norm_tfeat", action="store_true", help="Do not do normalize text feat")
        parser.add_argument("--v_feat_dirs", type=str, nargs="+",
                            help="video feature dirs. If more than one, will concat their features. "
                                 "Note that sub ctx features are also accepted here.")
        parser.add_argument("--t_feat_dir", type=str, help="text/query feature dir")
        parser.add_argument("--v_feat_dim", type=int, help="video feature dim")
        parser.add_argument("--t_feat_dim", type=int, help="text/query feature dim")
        parser.add_argument("--ctx_mode", type=str, default="video_tef")

        # Model config
        parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
                            help="Type of positional embedding to use on top of the image features")
        # * Transformer
        parser.add_argument('--enc_layers', default=2, type=int,
                            help="Number of encoding layers in the transformer")
        parser.add_argument('--dec_layers', default=2, type=int,
                            help="Number of decoding layers in the transformer")
        parser.add_argument('--dim_feedforward', default=1024, type=int,
                            help="Intermediate size of the feedforward layers in the transformer blocks")
        parser.add_argument('--hidden_dim', default=256, type=int,
                            help="Size of the embeddings (dimension of the transformer)")
        parser.add_argument('--input_dropout', default=0.5, type=float,
                            help="Dropout applied in input")
        parser.add_argument('--dropout', default=0.1, type=float,
                            help="Dropout applied in the transformer")
        parser.add_argument("--txt_drop_ratio", default=0, type=float,
                            help="drop txt_drop_ratio tokens from text input. 0.1=10%")
        parser.add_argument("--use_txt_pos", action="store_true", help="use position_embedding for text as well.")
        parser.add_argument('--nheads', default=8, type=int,
                            help="Number of attention heads inside the transformer's attentions")
        parser.add_argument('--num_queries', default=10, type=int,
                            help="Number of query slots")
        parser.add_argument('--pre_norm', action='store_true')
        # other model configs
        parser.add_argument("--n_input_proj", type=int, default=2, help="#layers to encoder input")
        parser.add_argument("--contrastive_hdim", type=int, default=64, help="dim for contrastive embeddings")
        parser.add_argument("--temperature", type=float, default=0.07, help="temperature nce contrastive_align_loss")
        # Loss
        parser.add_argument("--lw_saliency", type=float, default=1.,
                            help="weight for saliency loss, set to 0 will ignore")
        parser.add_argument("--saliency_margin", type=float, default=0.2)
        parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
                            help="Disables auxiliary decoding losses (loss at each layer)")
        parser.add_argument("--span_loss_type", default="l1", type=str, choices=['l1', 'ce'],
                            help="l1: (center-x, width) regression. ce: (st_idx, ed_idx) classification.")
        parser.add_argument("--contrastive_align_loss", action="store_true",
                            help="Disable contrastive_align_loss between matched query spans and the text.")
        # * Matcher
        parser.add_argument('--set_cost_span', default=10, type=float,
                            help="L1 span coefficient in the matching cost")
        parser.add_argument('--set_cost_giou', default=1, type=float,
                            help="giou span coefficient in the matching cost")
        parser.add_argument('--set_cost_class', default=4, type=float,
                            help="Class coefficient in the matching cost")

        # * Loss coefficients
        parser.add_argument('--span_loss_coef', default=10, type=float)
        parser.add_argument('--giou_loss_coef', default=1, type=float)
        parser.add_argument('--label_loss_coef', default=4, type=float)
        parser.add_argument('--eos_coef', default=0.1, type=float,
                            help="Relative classification weight of the no-object class")
        parser.add_argument("--contrastive_align_loss_coef", default=0.0, type=float)

        parser.add_argument("--no_sort_results", action="store_true",
                            help="do not sort results, use this for moment query visualization")
        parser.add_argument("--max_before_nms", type=int, default=10)
        parser.add_argument("--max_after_nms", type=int, default=10)
        parser.add_argument("--conf_thd", type=float, default=0.0, help="only keep windows with conf >= conf_thd")
        parser.add_argument("--nms_thd", type=float, default=-1,
                            help="additionally use non-maximum suppression "
                                 "(or non-minimum suppression for distance)"
                                 "to post-processing the predictions. "
                                 "-1: do not use nms. [0, 1]")
        self.parser = parser

    def display_save(self, opt):
        args = vars(opt)
        # Display settings
        print(dict_to_markdown(vars(opt), max_str_len=120))
        # Save settings
        if not isinstance(self, TestOptions):
            option_file_path = os.path.join(opt.results_dir, self.saved_option_filename)  # not yaml file indeed
            save_json(args, option_file_path, save_pretty=True)

    def parse(self):
        if not self.initialized:
            self.initialize()
        opt = self.parser.parse_args()

        if opt.debug:
            opt.results_root = os.path.sep.join(opt.results_root.split(os.path.sep)[:-1] + ["debug_results", ])
            opt.num_workers = 0

        if isinstance(self, TestOptions):
            # modify model_dir to absolute path
            # opt.model_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "results", opt.model_dir)
            opt.model_dir = os.path.dirname(opt.resume)
            saved_options = load_json(os.path.join(opt.model_dir, self.saved_option_filename))
            for arg in saved_options:  # use saved options to overwrite all BaseOptions args.
                if arg not in ["results_root", "num_workers", "nms_thd", "debug",  # "max_before_nms", "max_after_nms"
                               "max_pred_l", "min_pred_l",
                               "resume", "resume_all", "no_sort_results"]:
                    setattr(opt, arg, saved_options[arg])
            # opt.no_core_driver = True
            if opt.eval_results_dir is not None:
                opt.results_dir = opt.eval_results_dir
        else:
            if opt.exp_id is None:
                raise ValueError("--exp_id is required for at a training option!")

            ctx_str = opt.ctx_mode + "_sub" if any(["sub_ctx" in p for p in opt.v_feat_dirs]) else opt.ctx_mode
            opt.results_dir = os.path.join(opt.results_root,
                                           "-".join([opt.dset_name, ctx_str, opt.exp_id,
                                                     time.strftime("%Y_%m_%d_%H_%M_%S")]))
            mkdirp(opt.results_dir)
            # save a copy of current code
            code_dir = os.path.dirname(os.path.realpath(__file__))
            code_zip_filename = os.path.join(opt.results_dir, "code.zip")
            make_zipfile(code_dir, code_zip_filename,
                         enclosing_dir="code",
                         exclude_dirs_substring="results",
                         exclude_dirs=["results", "debug_results", "__pycache__"],
                         exclude_extensions=[".pyc", ".ipynb", ".swap"], )

        self.display_save(opt)

        opt.ckpt_filepath = os.path.join(opt.results_dir, self.ckpt_filename)
        opt.train_log_filepath = os.path.join(opt.results_dir, self.train_log_filename)
        opt.eval_log_filepath = os.path.join(opt.results_dir, self.eval_log_filename)
        opt.tensorboard_log_dir = os.path.join(opt.results_dir, self.tensorboard_log_dir)
        opt.device = torch.device("cuda" if opt.device >= 0 else "cpu")
        opt.pin_memory = not opt.no_pin_memory

        opt.use_tef = "tef" in opt.ctx_mode
        opt.use_video = "video" in opt.ctx_mode
        if not opt.use_video:
            opt.v_feat_dim = 0
        if opt.use_tef:
            opt.v_feat_dim += 2

        self.opt = opt
        return opt


class TestOptions(BaseOptions):
    """add additional options for evaluating"""

    def initialize(self):
        BaseOptions.initialize(self)
        # also need to specify --eval_split_name
        self.parser.add_argument("--eval_id", type=str, help="evaluation id")
        self.parser.add_argument("--eval_results_dir", type=str, default=None,
                                 help="dir to save results, if not set, fall back to training results_dir")
        self.parser.add_argument("--model_dir", type=str,
                                 help="dir contains the model file, will be converted to absolute path afterwards")