Spaces:
Runtime error
Runtime error
File size: 10,921 Bytes
ef1c94f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import torch
from torch.utils.data import Dataset
import numpy as np
from tqdm import tqdm
import random
import logging
from os.path import join, exists
from utils.basic_utils import load_jsonl, l2_normalize_np_array
from utils.tensor_utils import pad_sequences_1d
from moment_detr.span_utils import span_xx_to_cxw
logger = logging.getLogger(__name__)
class StartEndDataset(Dataset):
Q_FEAT_TYPES = ["pooler_output", "last_hidden_state"]
"""One line in data loaded from data_path."
{
"qid": 7803,
"query": "Man in gray top walks from outside to inside.",
"duration": 150,
"vid": "RoripwjYFp8_360.0_510.0",
"relevant_clip_ids": [13, 14, 15, 16, 17],
"relevant_windows": [[26, 36]]
}
"""
def __init__(self, dset_name, data_path, v_feat_dirs, q_feat_dir,
q_feat_type="last_hidden_state",
max_q_l=32, max_v_l=75, data_ratio=1.0, ctx_mode="video",
normalize_v=True, normalize_t=True, load_labels=True,
clip_len=2, max_windows=5, span_loss_type="l1", txt_drop_ratio=0):
self.dset_name = dset_name
self.data_path = data_path
self.data_ratio = data_ratio
self.v_feat_dirs = v_feat_dirs \
if isinstance(v_feat_dirs, list) else [v_feat_dirs]
self.q_feat_dir = q_feat_dir
self.q_feat_type = q_feat_type
self.max_q_l = max_q_l
self.max_v_l = max_v_l
self.ctx_mode = ctx_mode
self.use_tef = "tef" in ctx_mode
self.use_video = "video" in ctx_mode
self.normalize_t = normalize_t
self.normalize_v = normalize_v
self.load_labels = load_labels
self.clip_len = clip_len
self.max_windows = max_windows # maximum number of windows to use as labels
self.span_loss_type = span_loss_type
self.txt_drop_ratio = txt_drop_ratio
if "val" in data_path or "test" in data_path:
assert txt_drop_ratio == 0
# checks
assert q_feat_type in self.Q_FEAT_TYPES
# data
self.data = self.load_data()
def load_data(self):
datalist = load_jsonl(self.data_path)
if self.data_ratio != 1:
n_examples = int(len(datalist) * self.data_ratio)
datalist = datalist[:n_examples]
logger.info("Using {}% of the data: {} examples"
.format(self.data_ratio * 100, n_examples))
return datalist
def __len__(self):
return len(self.data)
def __getitem__(self, index):
meta = self.data[index]
model_inputs = dict()
model_inputs["query_feat"] = self._get_query_feat_by_qid(meta["qid"]) # (Dq, ) or (Lq, Dq)
if self.use_video:
model_inputs["video_feat"] = self._get_video_feat_by_vid(meta["vid"]) # (Lv, Dv)
ctx_l = len(model_inputs["video_feat"])
else:
ctx_l = self.max_v_l
if self.use_tef:
tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l
tef_ed = tef_st + 1.0 / ctx_l
tef = torch.stack([tef_st, tef_ed], dim=1) # (Lv, 2)
if self.use_video:
model_inputs["video_feat"] = torch.cat(
[model_inputs["video_feat"], tef], dim=1) # (Lv, Dv+2)
else:
model_inputs["video_feat"] = tef
if self.load_labels:
model_inputs["span_labels"] = self.get_span_labels(meta["relevant_windows"], ctx_l) # (#windows, 2)
if "subs_train" not in self.data_path:
model_inputs["saliency_pos_labels"], model_inputs["saliency_neg_labels"] = \
self.get_saliency_labels(meta["relevant_clip_ids"], meta["saliency_scores"], ctx_l)
else:
model_inputs["saliency_pos_labels"], model_inputs["saliency_neg_labels"] = \
self.get_saliency_labels_sub_as_query(meta["relevant_windows"][0], ctx_l) # only one gt
return dict(meta=meta, model_inputs=model_inputs)
def get_saliency_labels_sub_as_query(self, gt_window, ctx_l, max_n=2):
gt_st = int(gt_window[0] / self.clip_len)
gt_ed = max(0, min(int(gt_window[1] / self.clip_len), ctx_l) - 1)
if gt_st > gt_ed:
gt_st = gt_ed
if gt_st != gt_ed:
pos_clip_indices = random.sample(range(gt_st, gt_ed+1), k=max_n)
else:
pos_clip_indices = [gt_st, gt_st]
neg_pool = list(range(0, gt_st)) + list(range(gt_ed+1, ctx_l))
neg_clip_indices = random.sample(neg_pool, k=max_n)
return pos_clip_indices, neg_clip_indices
def get_saliency_labels(self, rel_clip_ids, scores, ctx_l, max_n=1, add_easy_negative=True):
"""Sum the scores from the three annotations, then take the two clips with the
maximum scores as positive, and two with the minimum scores as negative.
Args:
rel_clip_ids: list(int), list of relevant clip ids
scores: list([anno1_score, anno2_score, anno3_score]),
ctx_l: int
max_n: int, #clips to use as positive and negative, for easy and hard negative, respectively.
add_easy_negative: bool, if True, sample eay negative outside the relevant_clip_ids.
"""
# indices inside rel_clip_ids
scores = np.array(scores) # (#rel_clips, 3)
agg_scores = np.sum(scores, 1) # (#rel_clips, )
sort_indices = np.argsort(agg_scores) # increasing
# indices in the whole video
# the min(_, ctx_l-1) here is incorrect, but should not cause
# much troubles since this should be rarely used.
hard_pos_clip_indices = [min(rel_clip_ids[idx], ctx_l-1) for idx in sort_indices[-max_n:]]
hard_neg_clip_indices = [min(rel_clip_ids[idx], ctx_l-1) for idx in sort_indices[:max_n]]
easy_pos_clip_indices = []
easy_neg_clip_indices = []
if add_easy_negative:
easy_neg_pool = list(set(range(ctx_l)) - set(rel_clip_ids))
if len(easy_neg_pool) >= max_n:
easy_pos_clip_indices = random.sample(rel_clip_ids, k=max_n)
easy_neg_clip_indices = random.sample(easy_neg_pool, k=max_n)
else: # copy the hard ones
easy_pos_clip_indices = hard_pos_clip_indices
easy_neg_clip_indices = hard_neg_clip_indices
pos_clip_indices = hard_pos_clip_indices + easy_pos_clip_indices
neg_clip_indices = hard_neg_clip_indices + easy_neg_clip_indices
return pos_clip_indices, neg_clip_indices
def get_span_labels(self, windows, ctx_l):
"""
windows: list([st, ed]) in seconds. E.g. [[26, 36]], corresponding st_ed clip_indices [[13, 17]] (inclusive)
Note a maximum of `self.max_windows` windows are used.
returns Tensor of shape (#windows, 2), each row is [center, width] normalized by video length
"""
if len(windows) > self.max_windows:
random.shuffle(windows)
windows = windows[:self.max_windows]
if self.span_loss_type == "l1":
windows = torch.Tensor(windows) / (ctx_l * self.clip_len) # normalized windows in xx
windows = span_xx_to_cxw(windows) # normalized windows in cxw
elif self.span_loss_type == "ce":
windows = torch.Tensor([
[int(w[0] / self.clip_len), min(int(w[1] / self.clip_len), ctx_l) - 1]
for w in windows]).long() # inclusive
else:
raise NotImplementedError
return windows
def _get_query_feat_by_qid(self, qid):
q_feat_path = join(self.q_feat_dir, f"qid{qid}.npz")
q_feat = np.load(q_feat_path)[self.q_feat_type].astype(np.float32)
if self.q_feat_type == "last_hidden_state":
q_feat = q_feat[:self.max_q_l]
if self.normalize_t:
q_feat = l2_normalize_np_array(q_feat)
if self.txt_drop_ratio > 0:
q_feat = self.random_drop_rows(q_feat)
return torch.from_numpy(q_feat) # (D, ) or (Lq, D)
def random_drop_rows(self, embeddings):
"""randomly mask num_drop rows in embeddings to be zero.
Args:
embeddings: np.ndarray (L, D)
"""
num_drop_rows = round(len(embeddings) * self.txt_drop_ratio)
if num_drop_rows > 0:
row_indices = np.random.choice(
len(embeddings), size=num_drop_rows, replace=False)
embeddings[row_indices] = 0
return embeddings
def _get_video_feat_by_vid(self, vid):
v_feat_list = []
for _feat_dir in self.v_feat_dirs:
_feat_path = join(_feat_dir, f"{vid}.npz")
_feat = np.load(_feat_path)["features"][:self.max_v_l].astype(np.float32)
if self.normalize_v:
_feat = l2_normalize_np_array(_feat)
v_feat_list.append(_feat)
# some features are slightly longer than the others
min_len = min([len(e) for e in v_feat_list])
v_feat_list = [e[:min_len] for e in v_feat_list]
v_feat = np.concatenate(v_feat_list, axis=1)
return torch.from_numpy(v_feat) # (Lv, D)
def start_end_collate(batch):
batch_meta = [e["meta"] for e in batch] # seems no need to collate ?
model_inputs_keys = batch[0]["model_inputs"].keys()
batched_data = dict()
for k in model_inputs_keys:
if k == "span_labels":
batched_data[k] = [dict(spans=e["model_inputs"]["span_labels"]) for e in batch]
continue
if k in ["saliency_pos_labels", "saliency_neg_labels"]:
batched_data[k] = torch.LongTensor([e["model_inputs"][k] for e in batch])
continue
batched_data[k] = pad_sequences_1d(
[e["model_inputs"][k] for e in batch], dtype=torch.float32, fixed_length=None)
return batch_meta, batched_data
def prepare_batch_inputs(batched_model_inputs, device, non_blocking=False):
model_inputs = dict(
src_txt=batched_model_inputs["query_feat"][0].to(device, non_blocking=non_blocking),
src_txt_mask=batched_model_inputs["query_feat"][1].to(device, non_blocking=non_blocking),
src_vid=batched_model_inputs["video_feat"][0].to(device, non_blocking=non_blocking),
src_vid_mask=batched_model_inputs["video_feat"][1].to(device, non_blocking=non_blocking),
)
targets = {}
if "span_labels" in batched_model_inputs:
targets["span_labels"] = [
dict(spans=e["spans"].to(device, non_blocking=non_blocking))
for e in batched_model_inputs["span_labels"]
]
if "saliency_pos_labels" in batched_model_inputs:
for name in ["saliency_pos_labels", "saliency_neg_labels"]:
targets[name] = batched_model_inputs[name].to(device, non_blocking=non_blocking)
targets = None if len(targets) == 0 else targets
return model_inputs, targets
|