File size: 10,971 Bytes
ef1c94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import pprint
from tqdm import tqdm, trange
import numpy as np
import os
from collections import OrderedDict, defaultdict
from utils.basic_utils import AverageMeter

import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader

from moment_detr.config import TestOptions
from moment_detr.model import build_model
from moment_detr.span_utils import span_cxw_to_xx
from moment_detr.start_end_dataset import StartEndDataset, start_end_collate, prepare_batch_inputs
from moment_detr.postprocessing_moment_detr import PostProcessorDETR
from standalone_eval.eval import eval_submission
from utils.basic_utils import save_jsonl, save_json
from utils.temporal_nms import temporal_nms

import logging

logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
                    datefmt="%Y-%m-%d %H:%M:%S",
                    level=logging.INFO)


def post_processing_mr_nms(mr_res, nms_thd, max_before_nms, max_after_nms):
    mr_res_after_nms = []
    for e in mr_res:
        e["pred_relevant_windows"] = temporal_nms(
            e["pred_relevant_windows"][:max_before_nms],
            nms_thd=nms_thd,
            max_after_nms=max_after_nms
        )
        mr_res_after_nms.append(e)
    return mr_res_after_nms


def eval_epoch_post_processing(submission, opt, gt_data, save_submission_filename):
    # IOU_THDS = (0.5, 0.7)
    logger.info("Saving/Evaluating before nms results")
    submission_path = os.path.join(opt.results_dir, save_submission_filename)
    save_jsonl(submission, submission_path)

    if opt.eval_split_name in ["val", "test"]:  # since test_public has no GT
        metrics = eval_submission(
            submission, gt_data,
            verbose=opt.debug, match_number=not opt.debug
        )
        save_metrics_path = submission_path.replace(".jsonl", "_metrics.json")
        save_json(metrics, save_metrics_path, save_pretty=True, sort_keys=False)
        latest_file_paths = [submission_path, save_metrics_path]
    else:
        metrics = None
        latest_file_paths = [submission_path, ]

    if opt.nms_thd != -1:
        logger.info("[MR] Performing nms with nms_thd {}".format(opt.nms_thd))
        submission_after_nms = post_processing_mr_nms(
            submission, nms_thd=opt.nms_thd,
            max_before_nms=opt.max_before_nms, max_after_nms=opt.max_after_nms
        )

        logger.info("Saving/Evaluating nms results")
        submission_nms_path = submission_path.replace(".jsonl", "_nms_thd_{}.jsonl".format(opt.nms_thd))
        save_jsonl(submission_after_nms, submission_nms_path)
        if opt.eval_split_name == "val":
            metrics_nms = eval_submission(
                submission_after_nms, gt_data,
                verbose=opt.debug, match_number=not opt.debug
            )
            save_metrics_nms_path = submission_nms_path.replace(".jsonl", "_metrics.json")
            save_json(metrics_nms, save_metrics_nms_path, save_pretty=True, sort_keys=False)
            latest_file_paths += [submission_nms_path, save_metrics_nms_path]
        else:
            metrics_nms = None
            latest_file_paths = [submission_nms_path, ]
    else:
        metrics_nms = None
    return metrics, metrics_nms, latest_file_paths


@torch.no_grad()
def compute_mr_results(model, eval_loader, opt, epoch_i=None, criterion=None, tb_writer=None):
    model.eval()
    if criterion:
        assert eval_loader.dataset.load_labels
        criterion.eval()

    loss_meters = defaultdict(AverageMeter)
    write_tb = tb_writer is not None and epoch_i is not None

    mr_res = []
    for batch in tqdm(eval_loader, desc="compute st ed scores"):
        query_meta = batch[0]
        model_inputs, targets = prepare_batch_inputs(batch[1], opt.device, non_blocking=opt.pin_memory)
        outputs = model(**model_inputs)
        prob = F.softmax(outputs["pred_logits"], -1)  # (batch_size, #queries, #classes=2)
        if opt.span_loss_type == "l1":
            scores = prob[..., 0]  # * (batch_size, #queries)  foreground label is 0, we directly take it
            pred_spans = outputs["pred_spans"]  # (bsz, #queries, 2)
            _saliency_scores = outputs["saliency_scores"].half()  # (bsz, L)
            saliency_scores = []
            valid_vid_lengths = model_inputs["src_vid_mask"].sum(1).cpu().tolist()
            for j in range(len(valid_vid_lengths)):
                saliency_scores.append(_saliency_scores[j, :int(valid_vid_lengths[j])].tolist())
        else:
            bsz, n_queries = outputs["pred_spans"].shape[:2]  # # (bsz, #queries, max_v_l *2)
            pred_spans_logits = outputs["pred_spans"].view(bsz, n_queries, 2, opt.max_v_l)
            # TODO use more advanced decoding method with st_ed product
            pred_span_scores, pred_spans = F.softmax(pred_spans_logits, dim=-1).max(-1)  # 2 * (bsz, #queries, 2)
            scores = torch.prod(pred_span_scores, 2)  # (bsz, #queries)
            pred_spans[:, 1] += 1
            pred_spans *= opt.clip_length

        # compose predictions
        for idx, (meta, spans, score) in enumerate(zip(query_meta, pred_spans.cpu(), scores.cpu())):
            if opt.span_loss_type == "l1":
                spans = span_cxw_to_xx(spans) * meta["duration"]
            # # (#queries, 3), [st(float), ed(float), score(float)]
            cur_ranked_preds = torch.cat([spans, score[:, None]], dim=1).tolist()
            if not opt.no_sort_results:
                cur_ranked_preds = sorted(cur_ranked_preds, key=lambda x: x[2], reverse=True)
            cur_ranked_preds = [[float(f"{e:.4f}") for e in row] for row in cur_ranked_preds]
            cur_query_pred = dict(
                qid=meta["qid"],
                query=meta["query"],
                vid=meta["vid"],
                pred_relevant_windows=cur_ranked_preds,
                pred_saliency_scores=saliency_scores[idx]
            )
            mr_res.append(cur_query_pred)

        if criterion:
            loss_dict = criterion(outputs, targets)
            weight_dict = criterion.weight_dict
            losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
            loss_dict["loss_overall"] = float(losses)  # for logging only
            for k, v in loss_dict.items():
                loss_meters[k].update(float(v) * weight_dict[k] if k in weight_dict else float(v))

        if opt.debug:
            break

    if write_tb and criterion:
        for k, v in loss_meters.items():
            tb_writer.add_scalar("Eval/{}".format(k), v.avg, epoch_i + 1)

    post_processor = PostProcessorDETR(
        clip_length=2, min_ts_val=0, max_ts_val=150,
        min_w_l=2, max_w_l=150, move_window_method="left",
        process_func_names=("clip_ts", "round_multiple")
    )
    mr_res = post_processor(mr_res)
    return mr_res, loss_meters


def get_eval_res(model, eval_loader, opt, epoch_i, criterion, tb_writer):
    """compute and save query and video proposal embeddings"""
    eval_res, eval_loss_meters = compute_mr_results(model, eval_loader, opt, epoch_i, criterion, tb_writer)  # list(dict)
    return eval_res, eval_loss_meters


def eval_epoch(model, eval_dataset, opt, save_submission_filename, epoch_i=None, criterion=None, tb_writer=None):
    logger.info("Generate submissions")
    model.eval()
    if criterion is not None and eval_dataset.load_labels:
        criterion.eval()
    else:
        criterion = None

    eval_loader = DataLoader(
        eval_dataset,
        collate_fn=start_end_collate,
        batch_size=opt.eval_bsz,
        num_workers=opt.num_workers,
        shuffle=False,
        pin_memory=opt.pin_memory
    )

    submission, eval_loss_meters = get_eval_res(model, eval_loader, opt, epoch_i, criterion, tb_writer)
    if opt.no_sort_results:
        save_submission_filename = save_submission_filename.replace(".jsonl", "_unsorted.jsonl")
    metrics, metrics_nms, latest_file_paths = eval_epoch_post_processing(
        submission, opt, eval_dataset.data, save_submission_filename)
    return metrics, metrics_nms, eval_loss_meters, latest_file_paths


def setup_model(opt):
    """setup model/optimizer/scheduler and load checkpoints when needed"""
    logger.info("setup model/optimizer/scheduler")
    model, criterion = build_model(opt)
    if opt.device.type == "cuda":
        logger.info("CUDA enabled.")
        model.to(opt.device)
        criterion.to(opt.device)

    param_dicts = [{"params": [p for n, p in model.named_parameters() if p.requires_grad]}]
    optimizer = torch.optim.AdamW(param_dicts, lr=opt.lr, weight_decay=opt.wd)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, opt.lr_drop)

    if opt.resume is not None:
        logger.info(f"Load checkpoint from {opt.resume}")
        checkpoint = torch.load(opt.resume, map_location="cpu")
        model.load_state_dict(checkpoint["model"])
        if opt.resume_all:
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            opt.start_epoch = checkpoint['epoch'] + 1
        logger.info(f"Loaded model saved at epoch {checkpoint['epoch']} from checkpoint: {opt.resume}")
    else:
        logger.warning("If you intend to evaluate the model, please specify --resume with ckpt path")

    return model, criterion, optimizer, lr_scheduler


def start_inference():
    logger.info("Setup config, data and model...")
    opt = TestOptions().parse()
    cudnn.benchmark = True
    cudnn.deterministic = False

    assert opt.eval_path is not None
    eval_dataset = StartEndDataset(
        dset_name=opt.dset_name,
        data_path=opt.eval_path,
        v_feat_dirs=opt.v_feat_dirs,
        q_feat_dir=opt.t_feat_dir,
        q_feat_type="last_hidden_state",
        max_q_l=opt.max_q_l,
        max_v_l=opt.max_v_l,
        ctx_mode=opt.ctx_mode,
        data_ratio=opt.data_ratio,
        normalize_v=not opt.no_norm_vfeat,
        normalize_t=not opt.no_norm_tfeat,
        clip_len=opt.clip_length,
        max_windows=opt.max_windows,
        load_labels=True,  # opt.eval_split_name == "val",
        span_loss_type=opt.span_loss_type,
        txt_drop_ratio=0
    )

    model, criterion, _, _ = setup_model(opt)
    save_submission_filename = "inference_{}_{}_{}_preds.jsonl".format(
        opt.dset_name, opt.eval_split_name, opt.eval_id)
    logger.info("Starting inference...")
    with torch.no_grad():
        metrics_no_nms, metrics_nms, eval_loss_meters, latest_file_paths = \
            eval_epoch(model, eval_dataset, opt, save_submission_filename, criterion=criterion)
    logger.info("metrics_no_nms {}".format(pprint.pformat(metrics_no_nms["brief"], indent=4)))
    if metrics_nms is not None:
        logger.info("metrics_nms {}".format(pprint.pformat(metrics_nms["brief"], indent=4)))


if __name__ == '__main__':
    start_inference()