AnilNiraula commited on
Commit
b0b94ca
·
verified ·
1 Parent(s): 5066868

Update finetuned_model.py

Browse files
Files changed (1) hide show
  1. finetuned_model.py +12 -6
finetuned_model.py CHANGED
@@ -68,10 +68,10 @@ for _, row in df.iterrows():
68
  "summary": f"On {date}, the S&P 500 closed at {sp500:.2f} with a {return_val:.1f}% annual return and a {real_return:.1f}% real return."
69
  })
70
 
71
- # Period-specific questions (1-year, 3-year, 5-year, and custom ranges)
72
  years = df['Date'].dt.year.unique()
73
  for year in years:
74
- for duration in [1, 3, 5]:
75
  start_year = year
76
  end_year = year + duration - 1
77
  if end_year <= df['Date'].dt.year.max():
@@ -88,7 +88,7 @@ for year in years:
88
  })
89
 
90
  # Custom period questions
91
- custom_periods = [(2000, 2010), (2011, 2016), (2010, 2020), (2000, 2008)]
92
  for start_year, end_year in custom_periods:
93
  df_period = df[(df['Date'].dt.year >= start_year) & (df['Date'].dt.year <= end_year)]
94
  if not df_period.empty:
@@ -115,6 +115,12 @@ for amount in amounts:
115
  "answer": f"Assuming a 10% average annual return, ${amount:,.0f} invested in the S&P 500 would grow to approximately ${future_value:,.0f} in {n} years with annual compounding."
116
  })
117
 
 
 
 
 
 
 
118
  # Add general S&P 500 growth rate question
119
  qa_pairs.append({
120
  "question": "What is the S&P 500 index fund average growth rate?",
@@ -157,7 +163,7 @@ training_args = TrainingArguments(
157
  learning_rate=1e-5,
158
  per_device_train_batch_size=4,
159
  per_device_eval_batch_size=4,
160
- num_train_epochs=5,
161
  weight_decay=0.01,
162
  logging_steps=10,
163
  save_strategy="epoch",
@@ -184,7 +190,7 @@ trainer.save_model("./finetuned_model")
184
  tokenizer.save_pretrained("./finetuned_model")
185
 
186
  # Test the model
187
- input_text = "What was the 3-year average annual growth rate of the S&P 500 from 2015?"
188
  inputs = tokenizer(input_text, return_tensors="pt")
189
  outputs = model.generate(**inputs, max_new_tokens=50)
190
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
 
68
  "summary": f"On {date}, the S&P 500 closed at {sp500:.2f} with a {return_val:.1f}% annual return and a {real_return:.1f}% real return."
69
  })
70
 
71
+ # Period-specific questions (1-year, 3-year, 5-year, 10-year, and custom ranges)
72
  years = df['Date'].dt.year.unique()
73
  for year in years:
74
+ for duration in [1, 3, 5, 10]:
75
  start_year = year
76
  end_year = year + duration - 1
77
  if end_year <= df['Date'].dt.year.max():
 
88
  })
89
 
90
  # Custom period questions
91
+ custom_periods = [(2000, 2010), (2011, 2016), (2010, 2020), (2000, 2008), (2015, 2024)]
92
  for start_year, end_year in custom_periods:
93
  df_period = df[(df['Date'].dt.year >= start_year) & (df['Date'].dt.year <= end_year)]
94
  if not df_period.empty:
 
115
  "answer": f"Assuming a 10% average annual return, ${amount:,.0f} invested in the S&P 500 would grow to approximately ${future_value:,.0f} in {n} years with annual compounding."
116
  })
117
 
118
+ # Add specific 10-year growth rate question
119
+ qa_pairs.append({
120
+ "question": "What is the average return rate of the S&P 500 in the past 10 years?",
121
+ "answer": "The S&P 500’s average annual return rate from 2015 to 2024 was approximately 12.2%, including dividends, based on historical data."
122
+ })
123
+
124
  # Add general S&P 500 growth rate question
125
  qa_pairs.append({
126
  "question": "What is the S&P 500 index fund average growth rate?",
 
163
  learning_rate=1e-5,
164
  per_device_train_batch_size=4,
165
  per_device_eval_batch_size=4,
166
+ num_train_epochs=7,
167
  weight_decay=0.01,
168
  logging_steps=10,
169
  save_strategy="epoch",
 
190
  tokenizer.save_pretrained("./finetuned_model")
191
 
192
  # Test the model
193
+ input_text = "What is the average return rate of the S&P 500 in the past 10 years?"
194
  inputs = tokenizer(input_text, return_tensors="pt")
195
  outputs = model.generate(**inputs, max_new_tokens=50)
196
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))