Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -38,7 +38,7 @@ response_cache = {
|
|
38 |
"what is better individual stocks or etfs?": (
|
39 |
"Here’s a comparison of individual stocks vs. ETFs:\n"
|
40 |
"1. **Individual Stocks**: High returns possible (e.g., Apple up 80% in 2020) but riskier due to lack of diversification. Require active research.\n"
|
41 |
-
"2. **ETFs**: Diversify risk by tracking indices (e.g., SPY, S&P 500, ~12% avg. return 2015–
|
42 |
"3. **Recommendation**: Beginners should start with ETFs; experienced investors may add stocks.\n"
|
43 |
"Consult a financial planner."
|
44 |
),
|
@@ -81,21 +81,21 @@ response_cache = {
|
|
81 |
"Consult a financial planner."
|
82 |
),
|
83 |
"do you have a list of companies you recommend?": (
|
84 |
-
"I can’t recommend specific companies without data. Try ETFs like SPY (S&P 500, ~12% avg. return 2015–
|
85 |
"Research stocks like Apple (AAPL, ~80% return in 2020) or Johnson & Johnson on Yahoo Finance.\n"
|
86 |
"Consult a financial planner."
|
87 |
),
|
88 |
"how do i start investing in stocks?": (
|
89 |
"Learn from Investopedia. Set goals and assess risk. Open a brokerage account (Fidelity, Vanguard) "
|
90 |
-
"and start with ETFs (e.g., SPY, ~
|
91 |
),
|
92 |
"what's the difference between stocks and bonds?": (
|
93 |
-
"Stocks are company ownership with high risk and growth potential (e.g., S&P 500 ~
|
94 |
"with lower risk and steady interest. Diversify for balance."
|
95 |
),
|
96 |
"how much should i invest?": (
|
97 |
"Invest what you can afford after expenses and an emergency fund. Start with $100-$500 monthly "
|
98 |
-
"in ETFs like SPY (~
|
99 |
),
|
100 |
"what is dollar-cost averaging?": (
|
101 |
"Dollar-cost averaging is investing a fixed amount regularly (e.g., $100 monthly) in ETFs, "
|
@@ -105,7 +105,7 @@ response_cache = {
|
|
105 |
"Here are investing ideas:\n"
|
106 |
"1. Open a brokerage account (e.g., Fidelity) if 18 or older.\n"
|
107 |
"2. Deposit $100 or what you can afford.\n"
|
108 |
-
"3. Buy a researched ETF (e.g., SPY, ~
|
109 |
"4. Check regularly and enable dividend reinvesting.\n"
|
110 |
"5. Use dollar-cost averaging (e.g., monthly buys).\n"
|
111 |
"Consult a financial planner."
|
@@ -114,7 +114,7 @@ response_cache = {
|
|
114 |
"Here are investing tips:\n"
|
115 |
"1. Educate yourself with Investopedia or books.\n"
|
116 |
"2. Open a brokerage account (e.g., Vanguard).\n"
|
117 |
-
"3. Start small with ETFs like SPY (~
|
118 |
"4. Invest regularly using dollar-cost averaging.\n"
|
119 |
"5. Diversify to manage risk.\n"
|
120 |
"Consult a financial planner."
|
@@ -124,7 +124,7 @@ response_cache = {
|
|
124 |
"1. Study basics on Investopedia.\n"
|
125 |
"2. Open a brokerage account (e.g., Fidelity).\n"
|
126 |
"3. Deposit $100 or more after securing savings.\n"
|
127 |
-
"4. Buy an ETF like SPY (~
|
128 |
"5. Invest monthly with dollar-cost averaging.\n"
|
129 |
"Consult a financial planner."
|
130 |
),
|
@@ -132,7 +132,7 @@ response_cache = {
|
|
132 |
"Here’s investing advice:\n"
|
133 |
"1. Learn basics from Investopedia.\n"
|
134 |
"2. Open a brokerage account (e.g., Vanguard).\n"
|
135 |
-
"3. Start with $100 in an ETF like SPY (~
|
136 |
"4. Use dollar-cost averaging for regular investments.\n"
|
137 |
"5. Monitor and diversify your portfolio.\n"
|
138 |
"Consult a financial planner."
|
@@ -142,13 +142,13 @@ response_cache = {
|
|
142 |
"1. Educate yourself using Investopedia.\n"
|
143 |
"2. Open a brokerage account (e.g., Fidelity).\n"
|
144 |
"3. Deposit an initial $100 after savings.\n"
|
145 |
-
"4. Buy an ETF like SPY (~
|
146 |
"5. Use dollar-cost averaging monthly.\n"
|
147 |
"Consult a financial planner."
|
148 |
),
|
149 |
"what is the s&p 500 index fund average growth rate?": (
|
150 |
"The S&P 500 index fund’s average annual return is approximately 10–12% over the long term (1927–2025), including dividends, based on historical data. "
|
151 |
-
"For example, from 2015 to
|
152 |
),
|
153 |
"what was the s&p 500 return in 2020?": (
|
154 |
"The S&P 500 returned approximately 16.3% in 2020, including dividends, driven by recovery from the COVID-19 market crash."
|
@@ -174,6 +174,9 @@ response_cache = {
|
|
174 |
),
|
175 |
"what was the 5-year average annual growth rate of the s&p 500 from 2016?": (
|
176 |
"The S&P 500’s average annual growth rate from 2016 to 2020 was approximately 13.6%, including dividends, driven by strong market recovery."
|
|
|
|
|
|
|
177 |
)
|
178 |
}
|
179 |
|
@@ -200,267 +203,4 @@ try:
|
|
200 |
torch_dtype=torch.float16,
|
201 |
low_cpu_mem_usage=True
|
202 |
).to(device)
|
203 |
-
logger.info(f"Successfully
|
204 |
-
except Exception as e:
|
205 |
-
logger.error(f"Error loading model/tokenizer: {e}")
|
206 |
-
raise RuntimeError(f"Failed to load model: {str(e)}")
|
207 |
-
|
208 |
-
# Parse period from user input
|
209 |
-
def parse_period(query):
|
210 |
-
# Match specific year ranges (e.g., "2000 to 2008", "2011–2016")
|
211 |
-
match = re.search(r'(\d{4})\s*(?:to|-|–)\s*(\d{4})', query, re.IGNORECASE)
|
212 |
-
if match:
|
213 |
-
start_year, end_year = map(int, match.groups())
|
214 |
-
return start_year, end_year, None
|
215 |
-
# Match duration-based queries (e.g., "1-year from 2020", "3-year growth rate")
|
216 |
-
match = re.search(r'(\d+)-year.*from\s*(\d{4})', query, re.IGNORECASE)
|
217 |
-
if match:
|
218 |
-
duration, start_year = map(int, match.groups())
|
219 |
-
end_year = start_year + duration - 1
|
220 |
-
return start_year, end_year, duration
|
221 |
-
# Match general duration queries (e.g., "1-year growth rate")
|
222 |
-
match = re.search(r'(\d+)-year.*growth\s*rate', query, re.IGNORECASE)
|
223 |
-
if match:
|
224 |
-
duration = int(match.group(1))
|
225 |
-
max_year = df['Date'].dt.year.max() if df is not None else 2025
|
226 |
-
start_year = max_year - duration + 1
|
227 |
-
end_year = max_year
|
228 |
-
return start_year, end_year, duration
|
229 |
-
return None, None, None
|
230 |
-
|
231 |
-
# Calculate average growth rate
|
232 |
-
def calculate_growth_rate(start_year, end_year, duration=None):
|
233 |
-
if df is None or start_year is None or end_year is None:
|
234 |
-
return None, "Data not available or invalid period."
|
235 |
-
df_period = df[(df['Date'].dt.year >= start_year) & (df['Date'].dt.year <= end_year)]
|
236 |
-
if df_period.empty:
|
237 |
-
return None, f"No data available for {start_year} to {end_year}."
|
238 |
-
avg_return = df_period['Return'].mean()
|
239 |
-
if duration:
|
240 |
-
response = f"The S&P 500’s {duration}-year average annual growth rate from {start_year} to {end_year} was approximately {avg_return:.1f}%, including dividends."
|
241 |
-
else:
|
242 |
-
response = f"The S&P 500’s average annual growth rate from {start_year} to {end_year} was approximately {avg_return:.1f}%, including dividends."
|
243 |
-
return avg_return, response
|
244 |
-
|
245 |
-
# Parse investment return query
|
246 |
-
def parse_investment_query(query):
|
247 |
-
match = re.search(r'\$(\d+).*\s(\d+)\s*years?.*\bs&p\s*500', query, re.IGNORECASE)
|
248 |
-
if match:
|
249 |
-
amount = float(match.group(1))
|
250 |
-
years = int(match.group(2))
|
251 |
-
return amount, years
|
252 |
-
return None, None
|
253 |
-
|
254 |
-
# Calculate future value
|
255 |
-
def calculate_future_value(amount, years):
|
256 |
-
if df is None or amount is None or years is None:
|
257 |
-
return None, "Data not available or invalid input."
|
258 |
-
avg_annual_return = 10.0 # Historical S&P 500 average (1927–2025)
|
259 |
-
future_value = amount * (1 + avg_annual_return / 100) ** years
|
260 |
-
return future_value, (
|
261 |
-
f"Assuming a 10% average annual return, a ${amount:,.0f} investment in the S&P 500 would grow to approximately ${future_value:,.0f} "
|
262 |
-
f"in {years} years with annual compounding. This is based on the historical average return of 10–12% (1927–2025). "
|
263 |
-
"Future returns vary and are not guaranteed. Consult a financial planner."
|
264 |
-
)
|
265 |
-
|
266 |
-
# Define chat function
|
267 |
-
def chat_with_model(user_input, history=None, is_processing=False):
|
268 |
-
try:
|
269 |
-
start_time = time.time()
|
270 |
-
logger.info(f"Processing user input: {user_input}")
|
271 |
-
is_processing = True
|
272 |
-
logger.info("Showing loading animation")
|
273 |
-
|
274 |
-
# Normalize and check cache
|
275 |
-
cache_key = user_input.lower().strip()
|
276 |
-
cache_keys = list(response_cache.keys())
|
277 |
-
closest_key = cache_key if cache_key in response_cache else get_closest_cache_key(cache_key, cache_keys)
|
278 |
-
if closest_key:
|
279 |
-
logger.info(f"Cache hit for: {closest_key}")
|
280 |
-
response = response_cache[closest_key]
|
281 |
-
logger.info(f"Chatbot response: {response}")
|
282 |
-
history = history or []
|
283 |
-
history.append({"role": "user", "content": user_input})
|
284 |
-
history.append({"role": "assistant", "content": response})
|
285 |
-
end_time = time.time()
|
286 |
-
logger.info(f"Response time: {end_time - start_time:.2f} seconds")
|
287 |
-
return response, history, False, ""
|
288 |
-
|
289 |
-
# Check for investment return query
|
290 |
-
amount, years = parse_investment_query(user_input)
|
291 |
-
if amount and years:
|
292 |
-
future_value, response = calculate_future_value(amount, years)
|
293 |
-
if future_value is not None:
|
294 |
-
response_cache[cache_key] = response
|
295 |
-
logger.info(f"Investment query: ${amount} for {years} years, added to cache")
|
296 |
-
logger.info(f"Chatbot response: {response}")
|
297 |
-
history = history or []
|
298 |
-
history.append({"role": "user", "content": user_input})
|
299 |
-
history.append({"role": "assistant", "content": response})
|
300 |
-
end_time = time.time()
|
301 |
-
logger.info(f"Response time: {end_time - start_time:.2f} seconds")
|
302 |
-
return response, history, False, ""
|
303 |
-
|
304 |
-
# Check for period-specific query
|
305 |
-
start_year, end_year, duration = parse_period(user_input)
|
306 |
-
if start_year and end_year:
|
307 |
-
avg_return, response = calculate_growth_rate(start_year, end_year, duration)
|
308 |
-
if avg_return is not None:
|
309 |
-
response_cache[cache_key] = response
|
310 |
-
logger.info(f"Dynamic period query: {start_year}–{end_year}, added to cache")
|
311 |
-
logger.info(f"Chatbot response: {response}")
|
312 |
-
history = history or []
|
313 |
-
history.append({"role": "user", "content": user_input})
|
314 |
-
history.append({"role": "assistant", "content": response})
|
315 |
-
end_time = time.time()
|
316 |
-
logger.info(f"Response time: {end_time - start_time:.2f} seconds")
|
317 |
-
return response, history, False, ""
|
318 |
-
|
319 |
-
# Skip model for short prompts
|
320 |
-
if len(user_input.strip()) <= 5:
|
321 |
-
logger.info("Short prompt, returning default response")
|
322 |
-
response = "Hello! I'm FinChat, your financial advisor. Ask about investing!"
|
323 |
-
logger.info(f"Chatbot response: {response}")
|
324 |
-
history = history or []
|
325 |
-
history.append({"role": "user", "content": user_input})
|
326 |
-
history.append({"role": "assistant", "content": response})
|
327 |
-
end_time = time.time()
|
328 |
-
logger.info(f"Response time: {end_time - start_time:.2f} seconds")
|
329 |
-
return response, history, False, ""
|
330 |
-
|
331 |
-
# Construct prompt
|
332 |
-
full_prompt = prompt_prefix + user_input + "\nA:"
|
333 |
-
try:
|
334 |
-
inputs = tokenizer(full_prompt, return_tensors="pt", truncation=True, max_length=512).to(device)
|
335 |
-
except Exception as e:
|
336 |
-
logger.error(f"Error tokenizing input: {e}")
|
337 |
-
response = f"Error: Failed to process input: {str(e)}"
|
338 |
-
logger.info(f"Chatbot response: {response}")
|
339 |
-
history = history or []
|
340 |
-
history.append({"role": "user", "content": user_input})
|
341 |
-
history.append({"role": "assistant", "content": response})
|
342 |
-
end_time = time.time()
|
343 |
-
logger.info(f"Response time: {end_time - start_time:.2f} seconds")
|
344 |
-
return response, history, False, ""
|
345 |
-
|
346 |
-
# Generate response
|
347 |
-
with torch.inference_mode():
|
348 |
-
logger.info("Generating response with model")
|
349 |
-
gen_start_time = time.time()
|
350 |
-
outputs = model.generate(
|
351 |
-
**inputs,
|
352 |
-
max_new_tokens=50,
|
353 |
-
min_length=20,
|
354 |
-
do_sample=False,
|
355 |
-
repetition_penalty=2.0,
|
356 |
-
pad_token_id=tokenizer.eos_token_id
|
357 |
-
)
|
358 |
-
gen_end_time = time.time()
|
359 |
-
logger.info(f"Generation time: {gen_end_time - gen_start_time:.2f} seconds")
|
360 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
361 |
-
response = response[len(full_prompt):].strip() if response.startswith(full_prompt) else response
|
362 |
-
logger.info(f"Chatbot response: {response}")
|
363 |
-
|
364 |
-
# Update cache
|
365 |
-
response_cache[cache_key] = response
|
366 |
-
logger.info("Cache miss, added to in-memory cache")
|
367 |
-
|
368 |
-
# Update history
|
369 |
-
history = history or []
|
370 |
-
history.append({"role": "user", "content": user_input})
|
371 |
-
history.append({"role": "assistant", "content": response})
|
372 |
-
torch.cuda.empty_cache()
|
373 |
-
end_time = time.time()
|
374 |
-
logger.info(f"Response time: {end_time - start_time:.2f} seconds")
|
375 |
-
return response, history, False, ""
|
376 |
-
|
377 |
-
except Exception as e:
|
378 |
-
logger.error(f"Error generating response: {e}")
|
379 |
-
response = f"Error: {str(e)}"
|
380 |
-
logger.info(f"Chatbot response: {response}")
|
381 |
-
history = history or []
|
382 |
-
history.append({"role": "user", "content": user_input})
|
383 |
-
history.append({"role": "assistant", "content": response})
|
384 |
-
end_time = time.time()
|
385 |
-
logger.info(f"Response time: {end_time - start_time:.2f} seconds")
|
386 |
-
return response, history, False, ""
|
387 |
-
|
388 |
-
# Save cache on exit
|
389 |
-
def save_cache():
|
390 |
-
try:
|
391 |
-
with open(cache_file, 'w') as f:
|
392 |
-
json.dump(response_cache, f, indent=2)
|
393 |
-
logger.info("Saved cache to cache.json")
|
394 |
-
except Exception as e:
|
395 |
-
logger.warning(f"Failed to save cache.json: {e}")
|
396 |
-
|
397 |
-
# Create Gradio interface with loading animation
|
398 |
-
logger.info("Initializing Gradio interface")
|
399 |
-
try:
|
400 |
-
with gr.Blocks(
|
401 |
-
title="FinChat: An LLM based on distilgpt2 model",
|
402 |
-
css="""
|
403 |
-
.loader {
|
404 |
-
border: 5px solid #f3f3f3;
|
405 |
-
border-top: 5px solid #3498db;
|
406 |
-
border-radius: 50%;
|
407 |
-
width: 30px;
|
408 |
-
height: 30px;
|
409 |
-
animation: spin 1s linear infinite;
|
410 |
-
margin: 10px auto;
|
411 |
-
display: block;
|
412 |
-
}
|
413 |
-
@keyframes spin {
|
414 |
-
0% { transform: rotate(0deg); }
|
415 |
-
100% { transform: rotate(360deg); }
|
416 |
-
}
|
417 |
-
.hidden { display: none; }
|
418 |
-
"""
|
419 |
-
) as interface:
|
420 |
-
gr.Markdown(
|
421 |
-
"""
|
422 |
-
# FinChat: An LLM based on distilgpt2 model
|
423 |
-
FinChat provides financial advice using the lightweight distilgpt2 model, optimized for fast, detailed responses.
|
424 |
-
Ask about investing strategies, ETFs, stocks, or budgeting to get started!
|
425 |
-
"""
|
426 |
-
)
|
427 |
-
chatbot = gr.Chatbot(type="messages")
|
428 |
-
msg = gr.Textbox(label="Your message")
|
429 |
-
submit = gr.Button("Send")
|
430 |
-
clear = gr.Button("Clear")
|
431 |
-
loading = gr.HTML('<div class="loader hidden"></div>', label="Loading")
|
432 |
-
is_processing = gr.State(value=False)
|
433 |
-
|
434 |
-
def submit_message(user_input, history, is_processing):
|
435 |
-
response, updated_history, new_processing, clear_input = chat_with_model(user_input, history, is_processing)
|
436 |
-
loader_html = '<div class="loader"></div>' if new_processing else '<div class="loader hidden"></div>'
|
437 |
-
return clear_input, updated_history, loader_html, new_processing
|
438 |
-
|
439 |
-
submit.click(
|
440 |
-
fn=submit_message,
|
441 |
-
inputs=[msg, chatbot, is_processing],
|
442 |
-
outputs=[msg, chatbot, loading, is_processing]
|
443 |
-
)
|
444 |
-
clear.click(
|
445 |
-
fn=lambda: ("", [], '<div class="loader hidden"></div>', False),
|
446 |
-
outputs=[msg, chatbot, loading, is_processing]
|
447 |
-
)
|
448 |
-
logger.info("Gradio interface initialized successfully")
|
449 |
-
except Exception as e:
|
450 |
-
logger.error(f"Error initializing Gradio interface: {e}")
|
451 |
-
raise
|
452 |
-
|
453 |
-
# Launch interface (conditional for Spaces)
|
454 |
-
if __name__ == "__main__" and not os.getenv("HF_SPACE"):
|
455 |
-
logger.info("Launching Gradio interface locally")
|
456 |
-
try:
|
457 |
-
interface.launch(share=False, debug=True)
|
458 |
-
except Exception as e:
|
459 |
-
logger.error(f"Error launching interface: {e}")
|
460 |
-
raise
|
461 |
-
finally:
|
462 |
-
save_cache()
|
463 |
-
else:
|
464 |
-
logger.info("Running in Hugging Face Spaces, interface defined but not launched")
|
465 |
-
import atexit
|
466 |
-
atexit.register(save_cache)
|
|
|
38 |
"what is better individual stocks or etfs?": (
|
39 |
"Here’s a comparison of individual stocks vs. ETFs:\n"
|
40 |
"1. **Individual Stocks**: High returns possible (e.g., Apple up 80% in 2020) but riskier due to lack of diversification. Require active research.\n"
|
41 |
+
"2. **ETFs**: Diversify risk by tracking indices (e.g., SPY, S&P 500, ~12% avg. return 2015–2024). Lower fees and less research needed.\n"
|
42 |
"3. **Recommendation**: Beginners should start with ETFs; experienced investors may add stocks.\n"
|
43 |
"Consult a financial planner."
|
44 |
),
|
|
|
81 |
"Consult a financial planner."
|
82 |
),
|
83 |
"do you have a list of companies you recommend?": (
|
84 |
+
"I can’t recommend specific companies without data. Try ETFs like SPY (S&P 500, ~12% avg. return 2015–2024) or QQQ (tech). "
|
85 |
"Research stocks like Apple (AAPL, ~80% return in 2020) or Johnson & Johnson on Yahoo Finance.\n"
|
86 |
"Consult a financial planner."
|
87 |
),
|
88 |
"how do i start investing in stocks?": (
|
89 |
"Learn from Investopedia. Set goals and assess risk. Open a brokerage account (Fidelity, Vanguard) "
|
90 |
+
"and start with ETFs (e.g., SPY, ~12% avg. return 2015–2024). Consult a financial planner."
|
91 |
),
|
92 |
"what's the difference between stocks and bonds?": (
|
93 |
+
"Stocks are company ownership with high risk and growth potential (e.g., S&P 500 ~12% avg. return 2015–2024). Bonds are loans to companies/governments "
|
94 |
"with lower risk and steady interest. Diversify for balance."
|
95 |
),
|
96 |
"how much should i invest?": (
|
97 |
"Invest what you can afford after expenses and an emergency fund. Start with $100-$500 monthly "
|
98 |
+
"in ETFs like SPY (~12% avg. return 2015–2024). Consult a financial planner."
|
99 |
),
|
100 |
"what is dollar-cost averaging?": (
|
101 |
"Dollar-cost averaging is investing a fixed amount regularly (e.g., $100 monthly) in ETFs, "
|
|
|
105 |
"Here are investing ideas:\n"
|
106 |
"1. Open a brokerage account (e.g., Fidelity) if 18 or older.\n"
|
107 |
"2. Deposit $100 or what you can afford.\n"
|
108 |
+
"3. Buy a researched ETF (e.g., SPY, ~12% avg. return 2015–2024) or index fund.\n"
|
109 |
"4. Check regularly and enable dividend reinvesting.\n"
|
110 |
"5. Use dollar-cost averaging (e.g., monthly buys).\n"
|
111 |
"Consult a financial planner."
|
|
|
114 |
"Here are investing tips:\n"
|
115 |
"1. Educate yourself with Investopedia or books.\n"
|
116 |
"2. Open a brokerage account (e.g., Vanguard).\n"
|
117 |
+
"3. Start small with ETFs like SPY (~12% avg. return 2015–2024).\n"
|
118 |
"4. Invest regularly using dollar-cost averaging.\n"
|
119 |
"5. Diversify to manage risk.\n"
|
120 |
"Consult a financial planner."
|
|
|
124 |
"1. Study basics on Investopedia.\n"
|
125 |
"2. Open a brokerage account (e.g., Fidelity).\n"
|
126 |
"3. Deposit $100 or more after securing savings.\n"
|
127 |
+
"4. Buy an ETF like SPY (~12% avg. return 2015–2024) after research.\n"
|
128 |
"5. Invest monthly with dollar-cost averaging.\n"
|
129 |
"Consult a financial planner."
|
130 |
),
|
|
|
132 |
"Here’s investing advice:\n"
|
133 |
"1. Learn basics from Investopedia.\n"
|
134 |
"2. Open a brokerage account (e.g., Vanguard).\n"
|
135 |
+
"3. Start with $100 in an ETF like SPY (~12% avg. return 2015–2024).\n"
|
136 |
"4. Use dollar-cost averaging for regular investments.\n"
|
137 |
"5. Monitor and diversify your portfolio.\n"
|
138 |
"Consult a financial planner."
|
|
|
142 |
"1. Educate yourself using Investopedia.\n"
|
143 |
"2. Open a brokerage account (e.g., Fidelity).\n"
|
144 |
"3. Deposit an initial $100 after savings.\n"
|
145 |
+
"4. Buy an ETF like SPY (~12% avg. return 2015–2024) after research.\n"
|
146 |
"5. Use dollar-cost averaging monthly.\n"
|
147 |
"Consult a financial planner."
|
148 |
),
|
149 |
"what is the s&p 500 index fund average growth rate?": (
|
150 |
"The S&P 500 index fund’s average annual return is approximately 10–12% over the long term (1927–2025), including dividends, based on historical data. "
|
151 |
+
"For example, from 2015 to 2024, it averaged ~12.2% annually. Returns vary yearly due to market conditions. Consult a financial planner."
|
152 |
),
|
153 |
"what was the s&p 500 return in 2020?": (
|
154 |
"The S&P 500 returned approximately 16.3% in 2020, including dividends, driven by recovery from the COVID-19 market crash."
|
|
|
174 |
),
|
175 |
"what was the 5-year average annual growth rate of the s&p 500 from 2016?": (
|
176 |
"The S&P 500’s average annual growth rate from 2016 to 2020 was approximately 13.6%, including dividends, driven by strong market recovery."
|
177 |
+
),
|
178 |
+
"what is the average return rate of the s&p 500 in the past 10 years?": (
|
179 |
+
"The S&P 500’s average annual return rate from 2015 to 2024 was approximately 12.2%, including dividends, based on historical data."
|
180 |
)
|
181 |
}
|
182 |
|
|
|
203 |
torch_dtype=torch.float16,
|
204 |
low_cpu_mem_usage=True
|
205 |
).to(device)
|
206 |
+
logger.info(f"Successfully
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|