SkinAiAnalyzer / app.py
AmirKaseb's picture
Update app.py
17b9fca verified
raw
history blame
1.69 kB
import streamlit as st
import cv2
import numpy as np
import torch
from torchvision import transforms
# Load YOLOv5 models
models = []
models.append(torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True))
models.append(torch.hub.load('ultralytics/yolov5', 'yolov5m', pretrained=True))
models.append(torch.hub.load('ultralytics/yolov5', 'yolov5l', pretrained=True))
models.append(torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True))
# Custom CSS
html_style = """
<style>
.container {
padding: 20px;
background-color: #f9f9f9;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.title {
color: #ff69b4;
font-size: 36px;
text-align: center;
margin-bottom: 30px;
}
.subheader {
color: #ff69b4;
font-size: 24px;
margin-top: 20px;
}
.image-container {
margin-top: 20px;
text-align: center;
}
</style>
"""
st.markdown(html_style, unsafe_allow_html=True)
st.markdown("<h1 class='title'>AI Skin Analyzer</h1>", unsafe_allow_html=True)
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = cv2.imdecode(np.fromstring(uploaded_file.read(), np.uint8), 1)
st.image(image, caption="Uploaded Image", use_column_width=True)
st.markdown("<h2 class='subheader'>Model Predictions:</h2>", unsafe_allow_html=True)
# Perform object detection for each model
for i, model in enumerate(models):
st.markdown(f"<h3 class='subheader'>Model {i+1}</h3>", unsafe_allow_html=True)
results = model(image)
results.render()
output_image = results.imgs[0]
st.image(output_image, use_column_width=True)