import streamlit as st
import cv2
import numpy as np
import torch
from torchvision import transforms
# Load YOLOv5 models
models = []
models.append(torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True))
models.append(torch.hub.load('ultralytics/yolov5', 'yolov5m', pretrained=True))
models.append(torch.hub.load('ultralytics/yolov5', 'yolov5l', pretrained=True))
models.append(torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True))
# Custom CSS
html_style = """
"""
st.markdown(html_style, unsafe_allow_html=True)
st.markdown("
AI Skin Analyzer
", unsafe_allow_html=True)
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = cv2.imdecode(np.fromstring(uploaded_file.read(), np.uint8), 1)
st.image(image, caption="Uploaded Image", use_column_width=True)
st.markdown("", unsafe_allow_html=True)
# Perform object detection for each model
for i, model in enumerate(models):
st.markdown(f"", unsafe_allow_html=True)
results = model(image)
results.render()
output_image = results.imgs[0]
st.image(output_image, use_column_width=True)