|
import os |
|
from fastapi import FastAPI, Request |
|
from fastapi.responses import JSONResponse, FileResponse |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
import uvicorn |
|
|
|
app = FastAPI() |
|
|
|
|
|
os.environ["HF_HOME"] = "/tmp/huggingface" |
|
os.makedirs("/tmp/huggingface", exist_ok=True) |
|
|
|
|
|
model_name = "facebook/blenderbot-3B" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="/tmp/huggingface") |
|
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir="/tmp/huggingface") |
|
|
|
@app.get("/") |
|
async def serve_index(): |
|
return FileResponse("static/index.html") |
|
|
|
@app.post("/chat") |
|
async def chat(request: Request): |
|
data = await request.json() |
|
prompt = data.get("prompt", "") |
|
|
|
|
|
input_ids = tokenizer.encode(prompt + tokenizer.eos_token, return_tensors="pt") |
|
|
|
|
|
response_ids = model.generate( |
|
input_ids, |
|
max_length=100, |
|
num_return_sequences=1, |
|
pad_token_id=tokenizer.eos_token_id, |
|
attention_mask=torch.ones(input_ids.shape, dtype=torch.long) |
|
) |
|
|
|
|
|
response_text = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True) |
|
|
|
return JSONResponse({"response": response_text}) |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|