File size: 34,199 Bytes
c4ad43e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
# src/streamlit_app.py
import streamlit as st
import pandas as pd
import re # For robust YouTube video ID extraction
# Try to import Plotly, if not available, we'll use Streamlit's basic charts
try:
import plotly.express as px
PLOTLY_AVAILABLE = True
except ImportError:
PLOTLY_AVAILABLE = False
st.sidebar.warning(
"Plotly not installed. Charts will be basic. Consider 'pip install plotly'."
) # Optional warning
# Import our custom modules from the src directory
try:
from src.predict import (
predict_sentiments,
) # This function should return list of strings: "positive", "negative", "neutral"
from src.youtube import (
get_video_comments,
) # This function should return a list of comment strings
except ImportError as e:
st.error(
f"Failed to import necessary modules (predict.py, youtube.py). Ensure they are in the 'src' directory. Error: {e}"
)
# Stop the app if core modules are missing
st.stop()
def extract_video_id(url_or_id: str):
"""
Tries to get the YouTube video ID from different common URL types.
Also handles if the input is just the ID itself.
A bit of regex to find the ID part in common URLs.
"""
if not url_or_id:
return None
# Patterns for various YouTube URL formats
# Order matters: more specific patterns should come first if overlap exists
patterns = [
r"watch\?v=([a-zA-Z0-9_-]{11})", # Standard watch URL
r"youtu\.be/([a-zA-Z0-9_-]{11})", # Shortened URL
r"embed/([a-zA-Z0-9_-]{11})", # Embed URL
r"shorts/([a-zA-Z0-9_-]{11})", # Shorts URL
]
for pattern in patterns:
match = re.search(pattern, url_or_id)
if match:
return match.group(1) # The first capturing group is the ID
# If no pattern matches, check if the input itself is a valid 11-char ID
# Basic check: 11 chars, no spaces, not starting with http (already handled by regex above implicitly)
if len(url_or_id) == 11 and not (
"/" in url_or_id or "?" in url_or_id or "=" in url_or_id or "." in url_or_id
):
return url_or_id # Assume it's a direct ID
return None # Return None if no ID found
def analyze_youtube_video(video_url_or_id: str):
"""
Main function for the YouTube analysis part.
It gets comments, then predicts their sentiments.
Then it summarizes the results.
"""
video_id = extract_video_id(video_url_or_id)
if not video_id:
# Give a more helpful error message to the user
st.error(
"Oops! That doesn't look like a valid YouTube URL or Video ID. Please check and try again. Example: Z9kGRMglw-I or youtu.be/3?v=Z9kGRMglw-I"
)
return None # Stop if no valid ID
summary_data = {} # Initialize
# comments_with_sentiments = [] # Initialize
try:
with st.spinner(f"Fetching comments & title for video ID: {video_id}..."):
video_data = get_video_comments(video_id)
comments_text_list = video_data.get("comments", [])
video_title = video_data.get("title", "Video Title Not Found")
print(
f"DEBUG (streamlit_app.py): Received title from youtube.py: '{video_title}'"
)
# Check if we actually got any comments
if not comments_text_list:
st.warning(
"Hmm, no comments found for this video. Are comments enabled? Or is it a very new video?"
)
# Provide a default empty summary structure
summary_data = {
"num_comments_fetched": 0,
"num_comments_analyzed": 0,
"positive": 0,
"neutral": 0,
"negative": 0,
"positive_percentage": 0,
"neutral_percentage": 0,
"negative_percentage": 0,
"num_valid_predictions": 0,
}
return {"summary": summary_data, "comments_data": []}
st.info(
f"Great! Found {len(comments_text_list)} comments. Now thinking about their feelings (sentiments)..."
)
# Another spinner for the prediction part, as this can be slow on CPU
with st.spinner("Analyzing sentiments with the model... Please wait."):
# This calls predict_sentiments from predict.py
# Expected to return: ["positive", "negative", "neutral", ...]
prediction_results = predict_sentiments(comments_text_list)
positive_count = 0
negative_count = 0
neutral_count = 0
error_count = 0
for result in prediction_results:
label = result.get("label")
if label == "positive":
positive_count += 1
elif label == "negative":
negative_count += 1
elif label == "neutral":
neutral_count += 1
else:
error_count += 1
num_valid_predictions = positive_count + negative_count + neutral_count
total_comments_processed = len(prediction_results)
if error_count > 0:
st.warning(
f"Could not predict sentiment properly for {error_count} comments."
)
summary_data = {
"video_title": video_title,
"num_comments_fetched": len(comments_text_list),
"num_comments_analyzed": total_comments_processed,
"num_valid_predictions": num_valid_predictions,
"positive": positive_count,
"negative": negative_count,
"neutral": neutral_count,
"positive_percentage": (
(positive_count / num_valid_predictions) * 100
if num_valid_predictions > 0
else 0
),
"neutral_percentage": (
(neutral_count / num_valid_predictions) * 100
if num_valid_predictions > 0
else 0
),
"negative_percentage": (
(negative_count / num_valid_predictions) * 100
if num_valid_predictions > 0
else 0
),
}
comments_data_for_df = []
for i in range(len(comments_text_list)):
comment_text = comments_text_list[i]
result = prediction_results[i]
label = result.get("label", "Error")
scores = result.get("scores", {})
confidence = max(scores.values()) if scores else 0.0
comments_data_for_df.append(
{
"Comment Text": comment_text,
"Predicted Sentiment": label,
"Confidence": confidence,
# "All Scores": scores
}
)
return {"summary": summary_data, "comments_data": comments_data_for_df}
except Exception as e:
# Show a general error if anything unexpected happens
st.error(f"Uh oh! An error popped up during analysis: {str(e)}")
# Also print to console for more detailed debugging when running locally
print(f"Full error in analyze_youtube_video: {e}")
import traceback
traceback.print_exc() # Print full traceback to console
return None # Return None on error
# --- Streamlit App UI ---
# Page configuration: Set to centered layout (default) instead of "wide"
st.set_page_config(page_title="Social Sentiment Analysis", layout="centered")
st.title("π SOCIAL SENTIMENT ANALYSIS")
# A little description for the user
st.write(
"""
Welcome to the **Social Sentiment Analyzer!** π
This application uses a fine-tuned RoBERTa model to predict the sentiment (Positive, Neutral, or Negative) expressed in text.
Use the tabs below to choose your input method:
* **Analyze Text Input:** Paste or type any English text directly.
* **YouTube Analysis:** Enter a YouTube video URL or ID to analyze its comments.
* **Twitter/X Analysis:** Support for analyzing Twitter/X posts is coming soon!
Select a tab to begin!
"""
)
# Tabs for different platforms, makes it easy to add Twitter later
tab_text_input, tab_youtube, tab_twitter = st.tabs(
["Analyze Text Input", "YouTube Analysis", "Twitter/X Analysis (Coming Soon!)"]
)
with tab_text_input:
# Header for this tab
st.header("Analyze Sentiment of Your Text")
st.write(
"Enter a sentence or a short paragraph below to see its predicted sentiment distribution."
)
# Use text_area for potentially longer input
# Giving it a unique key helps maintain state if needed
user_text = st.text_area(
"Enter text here:",
key="text_input_area_key",
height=100,
placeholder="Type or paste your text...",
)
# Button to trigger the analysis
if st.button("Analyze Text", key="text_input_analyze_btn"):
# Check if the user actually entered something (not just whitespace)
if user_text and not user_text.isspace():
# Show a spinner while processing
with st.spinner("Analyzing your text..."):
try:
# Call the prediction function from predict.py
# Pass the input text as a list with one element
prediction_results = predict_sentiments([user_text])
# Check if prediction was successful and returned expected format
if (
prediction_results
and isinstance(prediction_results, list)
and len(prediction_results) > 0
):
# Get the result dictionary for the single input text
result = prediction_results[0]
predicted_label = result.get("label")
scores = result.get(
"scores"
) # This should be a dict like {'negative': 0.1, ...}
# Make sure we got a valid label and scores dictionary
if (
predicted_label
and scores
and isinstance(scores, dict)
and predicted_label != "Error"
):
# Display the top predicted sentiment
st.subheader("Predicted Sentiment:")
# Using Streamlit's built-in status elements for color
if predicted_label == "positive":
st.success(
f"The model thinks the sentiment is: **{predicted_label.capitalize()}** π"
)
elif predicted_label == "negative":
st.error(
f"The model thinks the sentiment is: **{predicted_label.capitalize()}** π"
)
else: # Neutral or potentially "Unknown" if mapping failed
st.info(
f"The model thinks the sentiment is: **{predicted_label.capitalize()}** π"
)
st.write("---") # Adding a small separator
st.subheader(
"Detailed Probabilities:"
) # Subheader for this section
if scores and isinstance(scores, dict):
# Using columns here helps align the probabilities nicely
prob_col_neg, prob_col_neu, prob_col_pos = st.columns(3)
# Helper to get score safely
def get_score(sentiment_name):
return scores.get(
sentiment_name.lower(), 0.0
) # Use lowercase to be safe
value_font_size = "22px"
value_font_weight = "bold"
with prob_col_neg:
neg_prob = get_score("negative")
# Display label "Negative"
st.markdown("**Negative π:**")
# Display the probability, larger font, red color
st.markdown(
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:red;'>{neg_prob:.1%}</p>",
unsafe_allow_html=True,
)
with prob_col_neu:
neu_prob = get_score("neutral")
# Display label "Neutral"
st.markdown("**Neutral π:**")
# Display the probability, larger font, grey color
st.markdown(
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:grey;'>{neu_prob:.1%}</p>",
unsafe_allow_html=True,
)
with prob_col_pos:
pos_prob = get_score("positive")
# Display label "Positive"
st.markdown("**Positive π:**")
# Display the probability, larger font, green color
st.markdown(
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:green;'>{pos_prob:.1%}</p>",
unsafe_allow_html=True,
)
else:
# If scores dict is missing or invalid
st.write("Could not retrieve probability scores.")
st.write("---") # Another separator before the chart
# --- Display Pie Chart of Probabilities ---
st.subheader("Sentiment Probabilities:")
if PLOTLY_AVAILABLE:
# Convert the scores dictionary to a DataFrame suitable for Plotly
# Ensure keys match class_names for consistency if possible
# Assuming scores keys are 'negative', 'neutral', 'positive'
score_items = list(scores.items())
if score_items: # Check if scores dict is not empty
df_scores = pd.DataFrame(
score_items,
columns=["Sentiment", "Probability"],
)
# Convert Probability to numeric just in case
df_scores["Probability"] = pd.to_numeric(
df_scores["Probability"]
)
# Define colors (ensure keys match Sentiment names case)
color_map = {
"positive": "green",
"neutral": "grey",
"negative": "red",
}
# Make keys lowercase for robust mapping
df_scores["Sentiment"] = df_scores[
"Sentiment"
].str.capitalize()
df_scores["Sentiment_Lower"] = df_scores[
"Sentiment"
].str.lower()
color_map_lower = {
k.lower(): v for k, v in color_map.items()
}
# Debug print for the dataframe fed to plotly
# st.write("DEBUG: DataFrame for text input pie chart:")
# st.dataframe(df_scores)
try:
# Create the pie chart
fig_pie_text = px.pie(
df_scores,
values="Probability", # Use the probability column
names="Sentiment", # Labels for the slices
title="Probability Distribution per Class",
color="Sentiment_Lower", # Use lowercase for mapping
color_discrete_map=color_map_lower,
) # Map colors
# Update how text is shown on slices
fig_pie_text.update_traces(
textposition="inside",
textinfo="percent+label",
hovertemplate="Sentiment: %{label}<br>Probability: %{percent}",
)
# Maybe add hover info too
fig_pie_text.update_layout(
uniformtext_minsize=16,
uniformtext_mode="hide",
) # Improve text fitting
st.plotly_chart(
fig_pie_text, use_container_width=True
)
except Exception as plot_e:
st.error(
f"Sorry, couldn't create the probability pie chart: {str(plot_e)}"
)
print(
f"Full error during text input Plotly chart generation: {plot_e}"
)
import traceback
traceback.print_exc()
st.write(
"Raw scores:", scores
) # Show raw scores as fallback
else: # If scores dictionary was empty
st.warning(
"Received empty scores, cannot plot chart."
)
elif not PLOTLY_AVAILABLE:
st.warning(
"Plotly not installed, cannot display pie chart. Showing raw scores instead."
)
st.json(
scores
) # Display raw scores as JSON if no Plotly
else:
# This case should be covered by the check above, but for safety
st.write("No valid score data available to plot.")
# --- End Pie Chart ---
else:
# This handles cases where predict_sentiments returned an error label
st.error(
f"Sentiment analysis failed for the input text. Result: {result}"
)
else:
# This handles cases where predict_sentiments returned None or empty list
st.error(
"Received no valid result from the prediction function."
)
except Exception as analysis_e:
# Catch-all for other errors during analysis for this tab
st.error(
f"An error occurred during text analysis: {str(analysis_e)}"
)
print(f"Full error during text input analysis: {analysis_e}")
import traceback
traceback.print_exc()
else:
# If user clicks button without entering text
st.warning("Please enter some text in the text area first!")
with tab_youtube:
st.header("YouTube Comment Sentiment Analyzer")
# Input field for URL or ID
video_url_input = st.text_input(
"Enter YouTube Video URL or Video ID:",
key="youtube_url_input_key", # Giving it a unique key
placeholder="e.g., Z9kGRMglw-I or full URL",
)
# Button to trigger analysis
if st.button("Analyze YouTube Comments", key="youtube_analyze_button_key"):
if video_url_input: # Check if user actually entered something
# analyze_youtube_video handles spinners internally now
analysis_results = analyze_youtube_video(video_url_input)
if (
analysis_results and analysis_results["summary"]
): # Check if we got valid results
summary = analysis_results["summary"]
comments_data = analysis_results["comments_data"]
video_title_display = summary.get(
"video_title", "Video Title Not Available"
)
st.markdown("---")
# Displaying the video title using markdown for potential formatting later
st.markdown(f"### Analyzing Video: **{video_title_display}**")
st.markdown("---")
st.subheader("π Sentiment Summary")
# Define desired font sizes (you can adjust these)
# label_font_size = (
# "24px" # Font size for the label text like "Comments Fetched"
# )
label_font_size = "24px"
value_font_size = "28px" # Font size for the actual count like "137"
value_font_weight = "bold" # Make the count bold
# Define colors for the sentiment counts
positive_color = "green"
neutral_color = "grey"
negative_color = "red"
# Using 5 columns
col_fetched, col_analyzed, col_pos, col_neu, col_neg = st.columns(5)
# Metric 1: Comments Fetched
with col_fetched:
# Label for fetched comments
st.markdown(
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Comments Fetched</p>",
unsafe_allow_html=True,
)
# The number of fetched comments
st.markdown(
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; margin-top: 0px;'>{summary.get('num_comments_fetched', 0)}</p>",
unsafe_allow_html=True,
)
# Metric 2: Comments Analyzed
with col_analyzed:
# Label for analyzed comments
st.markdown(
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Comments Analyzed</p>",
unsafe_allow_html=True,
)
# The number of analyzed comments
st.markdown(
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; margin-top: 0px;'>{summary.get('num_comments_analyzed', 0)}</p>",
unsafe_allow_html=True,
)
# Metric 3: Positive
with col_pos:
# Label for positive comments, with emoji
st.markdown(
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Positive π</p>",
unsafe_allow_html=True,
)
# The count of positive comments, green and bold
st.markdown(
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:{positive_color}; margin-top: 0px;'>{summary.get('positive', 0)}</p>",
unsafe_allow_html=True,
)
# Metric 4: Neutral
with col_neu:
# Label for neutral comments
st.markdown(
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Neutral π</p>",
unsafe_allow_html=True,
)
# The count of neutral comments, grey and bold
st.markdown(
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:{neutral_color}; margin-top: 0px;'>{summary.get('neutral', 0)}</p>",
unsafe_allow_html=True,
)
# Metric 5: Negative
with col_neg:
# Label for negative comments
st.markdown(
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Negative π</p>",
unsafe_allow_html=True,
)
# The count of negative comments, red and bold
st.markdown(
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:{negative_color}; margin-top: 0px;'>{summary.get('negative', 0)}</p>",
unsafe_allow_html=True,
)
# Add a visual separator before charts
st.markdown("---")
# Data for charts - make sure it has counts > 0
if summary.get("num_valid_predictions", 0) > 0:
# Prepare DataFrame for Plotly charts
sentiment_data_for_plot = [
{"Sentiment": "Positive", "Count": summary.get("positive", 0)},
{"Sentiment": "Neutral", "Count": summary.get("neutral", 0)},
{"Sentiment": "Negative", "Count": summary.get("negative", 0)},
]
sentiment_counts_df = pd.DataFrame(sentiment_data_for_plot)
# Filter out rows where Count is 0 for cleaner charts
sentiment_counts_df_for_plot = sentiment_counts_df[
sentiment_counts_df["Count"] > 0
].copy()
# Define the color map for charts
# Keys should match the 'Sentiment' column values
color_map = {
"Positive": "green",
"Neutral": "grey",
"Negative": "red",
}
if not sentiment_counts_df_for_plot.empty:
st.subheader("π Sentiment Distribution Charts")
# Try to use Plotly for richer charts
if PLOTLY_AVAILABLE:
try:
# Pie Chart (Corrected data input for Plotly)
# Plotly pie chart expects a DataFrame where one column is values, another is names
fig_pie = px.pie(
sentiment_counts_df_for_plot, # Use the filtered DataFrame
values="Count", # Column for pie slice values
names="Sentiment", # Column for pie slice names
title="Pie Chart: Comment Sentiments",
color="Sentiment", # Color slices based on the 'Sentiment' category
color_discrete_map=color_map,
) # Apply custom colors
fig_pie.update_traces(
textposition="inside",
textinfo="percent+label",
hovertemplate="Sentiment: %{label}<br>Count: %{value}<br>Percentage: %{percent}",
)
fig_pie.update_layout(
uniformtext_minsize=16, uniformtext_mode="hide"
)
st.plotly_chart(fig_pie, use_container_width=True)
# Bar Chart (Using Plotly for consistent coloring)
fig_bar = px.bar(
sentiment_counts_df_for_plot, # Use the filtered DataFrame
x="Sentiment", # Categories on X-axis
y="Count", # Values on Y-axis
title="Bar Chart: Comment Sentiments",
color="Sentiment", # Color bars based on 'Sentiment'
color_discrete_map=color_map, # Apply custom colors
labels={
"Count": "Number of Comments",
"Sentiment": "Sentiment Category",
},
) # Custom labels
st.plotly_chart(fig_bar, use_container_width=True)
except Exception as plot_e:
# Fallback if Plotly fails for some reason other than import
st.error(
f"Sorry, couldn't create Plotly charts: {plot_e}"
)
st.write(
"Displaying basic bar chart instead (default colors):"
)
st.bar_chart(
sentiment_counts_df.set_index("Sentiment")
) # Fallback with original (unfiltered for bar)
else:
# Fallback to Streamlit's basic bar chart if Plotly is not installed
st.write(
"Displaying basic bar chart (Plotly not installed):"
)
st.bar_chart(
sentiment_counts_df.set_index("Sentiment")
) # Basic bar chart
else:
# This message shows if all sentiment counts are zero
st.write(
"No sentiment data (Positive, Neutral, Negative all zero) to display in charts."
)
else:
# This message shows if no comments were analyzed successfully
st.write(
"Not enough valid sentiment data to display distribution charts."
)
# Display comments and their sentiments
if comments_data:
st.subheader(
f"π Analyzed Comments (showing first {len(comments_data)} results)"
)
comments_display_df = pd.DataFrame(comments_data)
if "Confidence" in comments_display_df.columns:
try:
# Format as percentage with 1 decimal place
comments_display_df["Confidence"] = comments_display_df[
"Confidence"
].map("{:.1%}".format)
except (TypeError, ValueError):
st.warning(
"Could not format confidence scores."
) # Handle potential errors if confidence is not numeric
st.dataframe(
comments_display_df, use_container_width=True, height=400
)
else:
st.write("No comments were analyzed to display.")
# else: # analyze_youtube_video already handles its own errors by showing st.error
# st.info("Could not complete analysis. Please check the URL or try again.")
else:
# If user clicks button without entering URL
st.warning("Please enter a YouTube URL or Video ID first!")
with tab_twitter:
st.header("Twitter/X Post Analysis")
st.info("This feature is currently under construction. Please check back later!")
# Placeholder for future Twitter input
# twitter_url_input = st.text_input("Enter Twitter/X Post URL:", key="twitter_url_input_key")
# if st.button("Analyze Tweets", key="twitter_analyze_button_key"):
# st.write("Imagine amazing Twitter analysis happening here... Tweet tweet!")
|