Commit
·
c4ad43e
1
Parent(s):
f531887
update app
Browse files- Dockerfile +0 -21
- app.py +709 -0
- src/__init__.py +0 -0
- src/youtube.py +3 -10
Dockerfile
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
FROM python:3.9-slim
|
2 |
-
|
3 |
-
WORKDIR /app
|
4 |
-
|
5 |
-
RUN apt-get update && apt-get install -y \
|
6 |
-
build-essential \
|
7 |
-
curl \
|
8 |
-
software-properties-common \
|
9 |
-
git \
|
10 |
-
&& rm -rf /var/lib/apt/lists/*
|
11 |
-
|
12 |
-
COPY requirements.txt ./
|
13 |
-
COPY src/ ./src/
|
14 |
-
|
15 |
-
RUN pip3 install -r requirements.txt
|
16 |
-
|
17 |
-
EXPOSE 8501
|
18 |
-
|
19 |
-
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
20 |
-
|
21 |
-
ENTRYPOINT ["streamlit", "run", "src/streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,709 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# src/streamlit_app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import pandas as pd
|
5 |
+
import re # For robust YouTube video ID extraction
|
6 |
+
|
7 |
+
# Try to import Plotly, if not available, we'll use Streamlit's basic charts
|
8 |
+
try:
|
9 |
+
import plotly.express as px
|
10 |
+
|
11 |
+
PLOTLY_AVAILABLE = True
|
12 |
+
except ImportError:
|
13 |
+
PLOTLY_AVAILABLE = False
|
14 |
+
st.sidebar.warning(
|
15 |
+
"Plotly not installed. Charts will be basic. Consider 'pip install plotly'."
|
16 |
+
) # Optional warning
|
17 |
+
|
18 |
+
# Import our custom modules from the src directory
|
19 |
+
try:
|
20 |
+
from src.predict import (
|
21 |
+
predict_sentiments,
|
22 |
+
) # This function should return list of strings: "positive", "negative", "neutral"
|
23 |
+
from src.youtube import (
|
24 |
+
get_video_comments,
|
25 |
+
) # This function should return a list of comment strings
|
26 |
+
except ImportError as e:
|
27 |
+
st.error(
|
28 |
+
f"Failed to import necessary modules (predict.py, youtube.py). Ensure they are in the 'src' directory. Error: {e}"
|
29 |
+
)
|
30 |
+
# Stop the app if core modules are missing
|
31 |
+
st.stop()
|
32 |
+
|
33 |
+
|
34 |
+
def extract_video_id(url_or_id: str):
|
35 |
+
"""
|
36 |
+
Tries to get the YouTube video ID from different common URL types.
|
37 |
+
Also handles if the input is just the ID itself.
|
38 |
+
A bit of regex to find the ID part in common URLs.
|
39 |
+
"""
|
40 |
+
if not url_or_id:
|
41 |
+
return None
|
42 |
+
|
43 |
+
# Patterns for various YouTube URL formats
|
44 |
+
# Order matters: more specific patterns should come first if overlap exists
|
45 |
+
patterns = [
|
46 |
+
r"watch\?v=([a-zA-Z0-9_-]{11})", # Standard watch URL
|
47 |
+
r"youtu\.be/([a-zA-Z0-9_-]{11})", # Shortened URL
|
48 |
+
r"embed/([a-zA-Z0-9_-]{11})", # Embed URL
|
49 |
+
r"shorts/([a-zA-Z0-9_-]{11})", # Shorts URL
|
50 |
+
]
|
51 |
+
|
52 |
+
for pattern in patterns:
|
53 |
+
match = re.search(pattern, url_or_id)
|
54 |
+
if match:
|
55 |
+
return match.group(1) # The first capturing group is the ID
|
56 |
+
|
57 |
+
# If no pattern matches, check if the input itself is a valid 11-char ID
|
58 |
+
# Basic check: 11 chars, no spaces, not starting with http (already handled by regex above implicitly)
|
59 |
+
if len(url_or_id) == 11 and not (
|
60 |
+
"/" in url_or_id or "?" in url_or_id or "=" in url_or_id or "." in url_or_id
|
61 |
+
):
|
62 |
+
return url_or_id # Assume it's a direct ID
|
63 |
+
|
64 |
+
return None # Return None if no ID found
|
65 |
+
|
66 |
+
|
67 |
+
def analyze_youtube_video(video_url_or_id: str):
|
68 |
+
"""
|
69 |
+
Main function for the YouTube analysis part.
|
70 |
+
It gets comments, then predicts their sentiments.
|
71 |
+
Then it summarizes the results.
|
72 |
+
"""
|
73 |
+
video_id = extract_video_id(video_url_or_id)
|
74 |
+
if not video_id:
|
75 |
+
# Give a more helpful error message to the user
|
76 |
+
st.error(
|
77 |
+
"Oops! That doesn't look like a valid YouTube URL or Video ID. Please check and try again. Example: Z9kGRMglw-I or youtu.be/3?v=Z9kGRMglw-I"
|
78 |
+
)
|
79 |
+
return None # Stop if no valid ID
|
80 |
+
|
81 |
+
summary_data = {} # Initialize
|
82 |
+
# comments_with_sentiments = [] # Initialize
|
83 |
+
|
84 |
+
try:
|
85 |
+
with st.spinner(f"Fetching comments & title for video ID: {video_id}..."):
|
86 |
+
video_data = get_video_comments(video_id)
|
87 |
+
comments_text_list = video_data.get("comments", [])
|
88 |
+
video_title = video_data.get("title", "Video Title Not Found")
|
89 |
+
print(
|
90 |
+
f"DEBUG (streamlit_app.py): Received title from youtube.py: '{video_title}'"
|
91 |
+
)
|
92 |
+
|
93 |
+
# Check if we actually got any comments
|
94 |
+
if not comments_text_list:
|
95 |
+
st.warning(
|
96 |
+
"Hmm, no comments found for this video. Are comments enabled? Or is it a very new video?"
|
97 |
+
)
|
98 |
+
# Provide a default empty summary structure
|
99 |
+
summary_data = {
|
100 |
+
"num_comments_fetched": 0,
|
101 |
+
"num_comments_analyzed": 0,
|
102 |
+
"positive": 0,
|
103 |
+
"neutral": 0,
|
104 |
+
"negative": 0,
|
105 |
+
"positive_percentage": 0,
|
106 |
+
"neutral_percentage": 0,
|
107 |
+
"negative_percentage": 0,
|
108 |
+
"num_valid_predictions": 0,
|
109 |
+
}
|
110 |
+
return {"summary": summary_data, "comments_data": []}
|
111 |
+
|
112 |
+
st.info(
|
113 |
+
f"Great! Found {len(comments_text_list)} comments. Now thinking about their feelings (sentiments)..."
|
114 |
+
)
|
115 |
+
# Another spinner for the prediction part, as this can be slow on CPU
|
116 |
+
with st.spinner("Analyzing sentiments with the model... Please wait."):
|
117 |
+
# This calls predict_sentiments from predict.py
|
118 |
+
# Expected to return: ["positive", "negative", "neutral", ...]
|
119 |
+
prediction_results = predict_sentiments(comments_text_list)
|
120 |
+
|
121 |
+
positive_count = 0
|
122 |
+
negative_count = 0
|
123 |
+
neutral_count = 0
|
124 |
+
error_count = 0
|
125 |
+
|
126 |
+
for result in prediction_results:
|
127 |
+
label = result.get("label")
|
128 |
+
if label == "positive":
|
129 |
+
positive_count += 1
|
130 |
+
elif label == "negative":
|
131 |
+
negative_count += 1
|
132 |
+
elif label == "neutral":
|
133 |
+
neutral_count += 1
|
134 |
+
else:
|
135 |
+
error_count += 1
|
136 |
+
|
137 |
+
num_valid_predictions = positive_count + negative_count + neutral_count
|
138 |
+
total_comments_processed = len(prediction_results)
|
139 |
+
if error_count > 0:
|
140 |
+
st.warning(
|
141 |
+
f"Could not predict sentiment properly for {error_count} comments."
|
142 |
+
)
|
143 |
+
|
144 |
+
summary_data = {
|
145 |
+
"video_title": video_title,
|
146 |
+
"num_comments_fetched": len(comments_text_list),
|
147 |
+
"num_comments_analyzed": total_comments_processed,
|
148 |
+
"num_valid_predictions": num_valid_predictions,
|
149 |
+
"positive": positive_count,
|
150 |
+
"negative": negative_count,
|
151 |
+
"neutral": neutral_count,
|
152 |
+
"positive_percentage": (
|
153 |
+
(positive_count / num_valid_predictions) * 100
|
154 |
+
if num_valid_predictions > 0
|
155 |
+
else 0
|
156 |
+
),
|
157 |
+
"neutral_percentage": (
|
158 |
+
(neutral_count / num_valid_predictions) * 100
|
159 |
+
if num_valid_predictions > 0
|
160 |
+
else 0
|
161 |
+
),
|
162 |
+
"negative_percentage": (
|
163 |
+
(negative_count / num_valid_predictions) * 100
|
164 |
+
if num_valid_predictions > 0
|
165 |
+
else 0
|
166 |
+
),
|
167 |
+
}
|
168 |
+
|
169 |
+
comments_data_for_df = []
|
170 |
+
for i in range(len(comments_text_list)):
|
171 |
+
comment_text = comments_text_list[i]
|
172 |
+
result = prediction_results[i]
|
173 |
+
label = result.get("label", "Error")
|
174 |
+
scores = result.get("scores", {})
|
175 |
+
confidence = max(scores.values()) if scores else 0.0
|
176 |
+
|
177 |
+
comments_data_for_df.append(
|
178 |
+
{
|
179 |
+
"Comment Text": comment_text,
|
180 |
+
"Predicted Sentiment": label,
|
181 |
+
"Confidence": confidence,
|
182 |
+
# "All Scores": scores
|
183 |
+
}
|
184 |
+
)
|
185 |
+
|
186 |
+
return {"summary": summary_data, "comments_data": comments_data_for_df}
|
187 |
+
|
188 |
+
except Exception as e:
|
189 |
+
# Show a general error if anything unexpected happens
|
190 |
+
st.error(f"Uh oh! An error popped up during analysis: {str(e)}")
|
191 |
+
# Also print to console for more detailed debugging when running locally
|
192 |
+
print(f"Full error in analyze_youtube_video: {e}")
|
193 |
+
import traceback
|
194 |
+
|
195 |
+
traceback.print_exc() # Print full traceback to console
|
196 |
+
return None # Return None on error
|
197 |
+
|
198 |
+
|
199 |
+
# --- Streamlit App UI ---
|
200 |
+
|
201 |
+
# Page configuration: Set to centered layout (default) instead of "wide"
|
202 |
+
st.set_page_config(page_title="Social Sentiment Analysis", layout="centered")
|
203 |
+
|
204 |
+
st.title("📊 SOCIAL SENTIMENT ANALYSIS")
|
205 |
+
# A little description for the user
|
206 |
+
st.write(
|
207 |
+
"""
|
208 |
+
Welcome to the **Social Sentiment Analyzer!** 👋
|
209 |
+
|
210 |
+
This application uses a fine-tuned RoBERTa model to predict the sentiment (Positive, Neutral, or Negative) expressed in text.
|
211 |
+
|
212 |
+
Use the tabs below to choose your input method:
|
213 |
+
* **Analyze Text Input:** Paste or type any English text directly.
|
214 |
+
* **YouTube Analysis:** Enter a YouTube video URL or ID to analyze its comments.
|
215 |
+
* **Twitter/X Analysis:** Support for analyzing Twitter/X posts is coming soon!
|
216 |
+
|
217 |
+
Select a tab to begin!
|
218 |
+
"""
|
219 |
+
)
|
220 |
+
|
221 |
+
# Tabs for different platforms, makes it easy to add Twitter later
|
222 |
+
tab_text_input, tab_youtube, tab_twitter = st.tabs(
|
223 |
+
["Analyze Text Input", "YouTube Analysis", "Twitter/X Analysis (Coming Soon!)"]
|
224 |
+
)
|
225 |
+
|
226 |
+
with tab_text_input:
|
227 |
+
# Header for this tab
|
228 |
+
st.header("Analyze Sentiment of Your Text")
|
229 |
+
st.write(
|
230 |
+
"Enter a sentence or a short paragraph below to see its predicted sentiment distribution."
|
231 |
+
)
|
232 |
+
|
233 |
+
# Use text_area for potentially longer input
|
234 |
+
# Giving it a unique key helps maintain state if needed
|
235 |
+
user_text = st.text_area(
|
236 |
+
"Enter text here:",
|
237 |
+
key="text_input_area_key",
|
238 |
+
height=100,
|
239 |
+
placeholder="Type or paste your text...",
|
240 |
+
)
|
241 |
+
|
242 |
+
# Button to trigger the analysis
|
243 |
+
if st.button("Analyze Text", key="text_input_analyze_btn"):
|
244 |
+
# Check if the user actually entered something (not just whitespace)
|
245 |
+
if user_text and not user_text.isspace():
|
246 |
+
# Show a spinner while processing
|
247 |
+
with st.spinner("Analyzing your text..."):
|
248 |
+
try:
|
249 |
+
# Call the prediction function from predict.py
|
250 |
+
# Pass the input text as a list with one element
|
251 |
+
prediction_results = predict_sentiments([user_text])
|
252 |
+
|
253 |
+
# Check if prediction was successful and returned expected format
|
254 |
+
if (
|
255 |
+
prediction_results
|
256 |
+
and isinstance(prediction_results, list)
|
257 |
+
and len(prediction_results) > 0
|
258 |
+
):
|
259 |
+
# Get the result dictionary for the single input text
|
260 |
+
result = prediction_results[0]
|
261 |
+
predicted_label = result.get("label")
|
262 |
+
scores = result.get(
|
263 |
+
"scores"
|
264 |
+
) # This should be a dict like {'negative': 0.1, ...}
|
265 |
+
|
266 |
+
# Make sure we got a valid label and scores dictionary
|
267 |
+
if (
|
268 |
+
predicted_label
|
269 |
+
and scores
|
270 |
+
and isinstance(scores, dict)
|
271 |
+
and predicted_label != "Error"
|
272 |
+
):
|
273 |
+
|
274 |
+
# Display the top predicted sentiment
|
275 |
+
st.subheader("Predicted Sentiment:")
|
276 |
+
# Using Streamlit's built-in status elements for color
|
277 |
+
if predicted_label == "positive":
|
278 |
+
st.success(
|
279 |
+
f"The model thinks the sentiment is: **{predicted_label.capitalize()}** 👍"
|
280 |
+
)
|
281 |
+
elif predicted_label == "negative":
|
282 |
+
st.error(
|
283 |
+
f"The model thinks the sentiment is: **{predicted_label.capitalize()}** 👎"
|
284 |
+
)
|
285 |
+
else: # Neutral or potentially "Unknown" if mapping failed
|
286 |
+
st.info(
|
287 |
+
f"The model thinks the sentiment is: **{predicted_label.capitalize()}** 😐"
|
288 |
+
)
|
289 |
+
|
290 |
+
st.write("---") # Adding a small separator
|
291 |
+
st.subheader(
|
292 |
+
"Detailed Probabilities:"
|
293 |
+
) # Subheader for this section
|
294 |
+
if scores and isinstance(scores, dict):
|
295 |
+
# Using columns here helps align the probabilities nicely
|
296 |
+
prob_col_neg, prob_col_neu, prob_col_pos = st.columns(3)
|
297 |
+
|
298 |
+
# Helper to get score safely
|
299 |
+
def get_score(sentiment_name):
|
300 |
+
return scores.get(
|
301 |
+
sentiment_name.lower(), 0.0
|
302 |
+
) # Use lowercase to be safe
|
303 |
+
|
304 |
+
value_font_size = "22px"
|
305 |
+
value_font_weight = "bold"
|
306 |
+
|
307 |
+
with prob_col_neg:
|
308 |
+
neg_prob = get_score("negative")
|
309 |
+
# Display label "Negative"
|
310 |
+
st.markdown("**Negative 👎:**")
|
311 |
+
# Display the probability, larger font, red color
|
312 |
+
st.markdown(
|
313 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:red;'>{neg_prob:.1%}</p>",
|
314 |
+
unsafe_allow_html=True,
|
315 |
+
)
|
316 |
+
|
317 |
+
with prob_col_neu:
|
318 |
+
neu_prob = get_score("neutral")
|
319 |
+
# Display label "Neutral"
|
320 |
+
st.markdown("**Neutral 😐:**")
|
321 |
+
# Display the probability, larger font, grey color
|
322 |
+
st.markdown(
|
323 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:grey;'>{neu_prob:.1%}</p>",
|
324 |
+
unsafe_allow_html=True,
|
325 |
+
)
|
326 |
+
|
327 |
+
with prob_col_pos:
|
328 |
+
pos_prob = get_score("positive")
|
329 |
+
# Display label "Positive"
|
330 |
+
st.markdown("**Positive 👍:**")
|
331 |
+
# Display the probability, larger font, green color
|
332 |
+
st.markdown(
|
333 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:green;'>{pos_prob:.1%}</p>",
|
334 |
+
unsafe_allow_html=True,
|
335 |
+
)
|
336 |
+
|
337 |
+
else:
|
338 |
+
# If scores dict is missing or invalid
|
339 |
+
st.write("Could not retrieve probability scores.")
|
340 |
+
st.write("---") # Another separator before the chart
|
341 |
+
|
342 |
+
# --- Display Pie Chart of Probabilities ---
|
343 |
+
st.subheader("Sentiment Probabilities:")
|
344 |
+
if PLOTLY_AVAILABLE:
|
345 |
+
# Convert the scores dictionary to a DataFrame suitable for Plotly
|
346 |
+
# Ensure keys match class_names for consistency if possible
|
347 |
+
# Assuming scores keys are 'negative', 'neutral', 'positive'
|
348 |
+
score_items = list(scores.items())
|
349 |
+
if score_items: # Check if scores dict is not empty
|
350 |
+
df_scores = pd.DataFrame(
|
351 |
+
score_items,
|
352 |
+
columns=["Sentiment", "Probability"],
|
353 |
+
)
|
354 |
+
# Convert Probability to numeric just in case
|
355 |
+
df_scores["Probability"] = pd.to_numeric(
|
356 |
+
df_scores["Probability"]
|
357 |
+
)
|
358 |
+
|
359 |
+
# Define colors (ensure keys match Sentiment names case)
|
360 |
+
color_map = {
|
361 |
+
"positive": "green",
|
362 |
+
"neutral": "grey",
|
363 |
+
"negative": "red",
|
364 |
+
}
|
365 |
+
# Make keys lowercase for robust mapping
|
366 |
+
df_scores["Sentiment"] = df_scores[
|
367 |
+
"Sentiment"
|
368 |
+
].str.capitalize()
|
369 |
+
df_scores["Sentiment_Lower"] = df_scores[
|
370 |
+
"Sentiment"
|
371 |
+
].str.lower()
|
372 |
+
color_map_lower = {
|
373 |
+
k.lower(): v for k, v in color_map.items()
|
374 |
+
}
|
375 |
+
|
376 |
+
# Debug print for the dataframe fed to plotly
|
377 |
+
# st.write("DEBUG: DataFrame for text input pie chart:")
|
378 |
+
# st.dataframe(df_scores)
|
379 |
+
|
380 |
+
try:
|
381 |
+
# Create the pie chart
|
382 |
+
fig_pie_text = px.pie(
|
383 |
+
df_scores,
|
384 |
+
values="Probability", # Use the probability column
|
385 |
+
names="Sentiment", # Labels for the slices
|
386 |
+
title="Probability Distribution per Class",
|
387 |
+
color="Sentiment_Lower", # Use lowercase for mapping
|
388 |
+
color_discrete_map=color_map_lower,
|
389 |
+
) # Map colors
|
390 |
+
|
391 |
+
# Update how text is shown on slices
|
392 |
+
fig_pie_text.update_traces(
|
393 |
+
textposition="inside",
|
394 |
+
textinfo="percent+label",
|
395 |
+
hovertemplate="Sentiment: %{label}<br>Probability: %{percent}",
|
396 |
+
)
|
397 |
+
# Maybe add hover info too
|
398 |
+
fig_pie_text.update_layout(
|
399 |
+
uniformtext_minsize=16,
|
400 |
+
uniformtext_mode="hide",
|
401 |
+
) # Improve text fitting
|
402 |
+
|
403 |
+
st.plotly_chart(
|
404 |
+
fig_pie_text, use_container_width=True
|
405 |
+
)
|
406 |
+
|
407 |
+
except Exception as plot_e:
|
408 |
+
st.error(
|
409 |
+
f"Sorry, couldn't create the probability pie chart: {str(plot_e)}"
|
410 |
+
)
|
411 |
+
print(
|
412 |
+
f"Full error during text input Plotly chart generation: {plot_e}"
|
413 |
+
)
|
414 |
+
import traceback
|
415 |
+
|
416 |
+
traceback.print_exc()
|
417 |
+
st.write(
|
418 |
+
"Raw scores:", scores
|
419 |
+
) # Show raw scores as fallback
|
420 |
+
|
421 |
+
else: # If scores dictionary was empty
|
422 |
+
st.warning(
|
423 |
+
"Received empty scores, cannot plot chart."
|
424 |
+
)
|
425 |
+
|
426 |
+
elif not PLOTLY_AVAILABLE:
|
427 |
+
st.warning(
|
428 |
+
"Plotly not installed, cannot display pie chart. Showing raw scores instead."
|
429 |
+
)
|
430 |
+
st.json(
|
431 |
+
scores
|
432 |
+
) # Display raw scores as JSON if no Plotly
|
433 |
+
else:
|
434 |
+
# This case should be covered by the check above, but for safety
|
435 |
+
st.write("No valid score data available to plot.")
|
436 |
+
# --- End Pie Chart ---
|
437 |
+
|
438 |
+
else:
|
439 |
+
# This handles cases where predict_sentiments returned an error label
|
440 |
+
st.error(
|
441 |
+
f"Sentiment analysis failed for the input text. Result: {result}"
|
442 |
+
)
|
443 |
+
|
444 |
+
else:
|
445 |
+
# This handles cases where predict_sentiments returned None or empty list
|
446 |
+
st.error(
|
447 |
+
"Received no valid result from the prediction function."
|
448 |
+
)
|
449 |
+
|
450 |
+
except Exception as analysis_e:
|
451 |
+
# Catch-all for other errors during analysis for this tab
|
452 |
+
st.error(
|
453 |
+
f"An error occurred during text analysis: {str(analysis_e)}"
|
454 |
+
)
|
455 |
+
print(f"Full error during text input analysis: {analysis_e}")
|
456 |
+
import traceback
|
457 |
+
|
458 |
+
traceback.print_exc()
|
459 |
+
|
460 |
+
else:
|
461 |
+
# If user clicks button without entering text
|
462 |
+
st.warning("Please enter some text in the text area first!")
|
463 |
+
|
464 |
+
with tab_youtube:
|
465 |
+
st.header("YouTube Comment Sentiment Analyzer")
|
466 |
+
# Input field for URL or ID
|
467 |
+
video_url_input = st.text_input(
|
468 |
+
"Enter YouTube Video URL or Video ID:",
|
469 |
+
key="youtube_url_input_key", # Giving it a unique key
|
470 |
+
placeholder="e.g., Z9kGRMglw-I or full URL",
|
471 |
+
)
|
472 |
+
|
473 |
+
# Button to trigger analysis
|
474 |
+
if st.button("Analyze YouTube Comments", key="youtube_analyze_button_key"):
|
475 |
+
if video_url_input: # Check if user actually entered something
|
476 |
+
# analyze_youtube_video handles spinners internally now
|
477 |
+
analysis_results = analyze_youtube_video(video_url_input)
|
478 |
+
|
479 |
+
if (
|
480 |
+
analysis_results and analysis_results["summary"]
|
481 |
+
): # Check if we got valid results
|
482 |
+
summary = analysis_results["summary"]
|
483 |
+
comments_data = analysis_results["comments_data"]
|
484 |
+
video_title_display = summary.get(
|
485 |
+
"video_title", "Video Title Not Available"
|
486 |
+
)
|
487 |
+
|
488 |
+
st.markdown("---")
|
489 |
+
# Displaying the video title using markdown for potential formatting later
|
490 |
+
st.markdown(f"### Analyzing Video: **{video_title_display}**")
|
491 |
+
st.markdown("---")
|
492 |
+
|
493 |
+
st.subheader("📊 Sentiment Summary")
|
494 |
+
|
495 |
+
# Define desired font sizes (you can adjust these)
|
496 |
+
# label_font_size = (
|
497 |
+
# "24px" # Font size for the label text like "Comments Fetched"
|
498 |
+
# )
|
499 |
+
label_font_size = "24px"
|
500 |
+
value_font_size = "28px" # Font size for the actual count like "137"
|
501 |
+
value_font_weight = "bold" # Make the count bold
|
502 |
+
|
503 |
+
# Define colors for the sentiment counts
|
504 |
+
positive_color = "green"
|
505 |
+
neutral_color = "grey"
|
506 |
+
negative_color = "red"
|
507 |
+
|
508 |
+
# Using 5 columns
|
509 |
+
col_fetched, col_analyzed, col_pos, col_neu, col_neg = st.columns(5)
|
510 |
+
|
511 |
+
# Metric 1: Comments Fetched
|
512 |
+
with col_fetched:
|
513 |
+
# Label for fetched comments
|
514 |
+
st.markdown(
|
515 |
+
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Comments Fetched</p>",
|
516 |
+
unsafe_allow_html=True,
|
517 |
+
)
|
518 |
+
# The number of fetched comments
|
519 |
+
st.markdown(
|
520 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; margin-top: 0px;'>{summary.get('num_comments_fetched', 0)}</p>",
|
521 |
+
unsafe_allow_html=True,
|
522 |
+
)
|
523 |
+
|
524 |
+
# Metric 2: Comments Analyzed
|
525 |
+
with col_analyzed:
|
526 |
+
# Label for analyzed comments
|
527 |
+
st.markdown(
|
528 |
+
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Comments Analyzed</p>",
|
529 |
+
unsafe_allow_html=True,
|
530 |
+
)
|
531 |
+
# The number of analyzed comments
|
532 |
+
st.markdown(
|
533 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; margin-top: 0px;'>{summary.get('num_comments_analyzed', 0)}</p>",
|
534 |
+
unsafe_allow_html=True,
|
535 |
+
)
|
536 |
+
|
537 |
+
# Metric 3: Positive
|
538 |
+
with col_pos:
|
539 |
+
# Label for positive comments, with emoji
|
540 |
+
st.markdown(
|
541 |
+
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Positive 👍</p>",
|
542 |
+
unsafe_allow_html=True,
|
543 |
+
)
|
544 |
+
# The count of positive comments, green and bold
|
545 |
+
st.markdown(
|
546 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:{positive_color}; margin-top: 0px;'>{summary.get('positive', 0)}</p>",
|
547 |
+
unsafe_allow_html=True,
|
548 |
+
)
|
549 |
+
|
550 |
+
# Metric 4: Neutral
|
551 |
+
with col_neu:
|
552 |
+
# Label for neutral comments
|
553 |
+
st.markdown(
|
554 |
+
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Neutral 😐</p>",
|
555 |
+
unsafe_allow_html=True,
|
556 |
+
)
|
557 |
+
# The count of neutral comments, grey and bold
|
558 |
+
st.markdown(
|
559 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:{neutral_color}; margin-top: 0px;'>{summary.get('neutral', 0)}</p>",
|
560 |
+
unsafe_allow_html=True,
|
561 |
+
)
|
562 |
+
|
563 |
+
# Metric 5: Negative
|
564 |
+
with col_neg:
|
565 |
+
# Label for negative comments
|
566 |
+
st.markdown(
|
567 |
+
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Negative 👎</p>",
|
568 |
+
unsafe_allow_html=True,
|
569 |
+
)
|
570 |
+
# The count of negative comments, red and bold
|
571 |
+
st.markdown(
|
572 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:{negative_color}; margin-top: 0px;'>{summary.get('negative', 0)}</p>",
|
573 |
+
unsafe_allow_html=True,
|
574 |
+
)
|
575 |
+
|
576 |
+
# Add a visual separator before charts
|
577 |
+
st.markdown("---")
|
578 |
+
|
579 |
+
# Data for charts - make sure it has counts > 0
|
580 |
+
if summary.get("num_valid_predictions", 0) > 0:
|
581 |
+
# Prepare DataFrame for Plotly charts
|
582 |
+
sentiment_data_for_plot = [
|
583 |
+
{"Sentiment": "Positive", "Count": summary.get("positive", 0)},
|
584 |
+
{"Sentiment": "Neutral", "Count": summary.get("neutral", 0)},
|
585 |
+
{"Sentiment": "Negative", "Count": summary.get("negative", 0)},
|
586 |
+
]
|
587 |
+
sentiment_counts_df = pd.DataFrame(sentiment_data_for_plot)
|
588 |
+
# Filter out rows where Count is 0 for cleaner charts
|
589 |
+
sentiment_counts_df_for_plot = sentiment_counts_df[
|
590 |
+
sentiment_counts_df["Count"] > 0
|
591 |
+
].copy()
|
592 |
+
|
593 |
+
# Define the color map for charts
|
594 |
+
# Keys should match the 'Sentiment' column values
|
595 |
+
color_map = {
|
596 |
+
"Positive": "green",
|
597 |
+
"Neutral": "grey",
|
598 |
+
"Negative": "red",
|
599 |
+
}
|
600 |
+
|
601 |
+
if not sentiment_counts_df_for_plot.empty:
|
602 |
+
st.subheader("📈 Sentiment Distribution Charts")
|
603 |
+
# Try to use Plotly for richer charts
|
604 |
+
if PLOTLY_AVAILABLE:
|
605 |
+
try:
|
606 |
+
# Pie Chart (Corrected data input for Plotly)
|
607 |
+
# Plotly pie chart expects a DataFrame where one column is values, another is names
|
608 |
+
fig_pie = px.pie(
|
609 |
+
sentiment_counts_df_for_plot, # Use the filtered DataFrame
|
610 |
+
values="Count", # Column for pie slice values
|
611 |
+
names="Sentiment", # Column for pie slice names
|
612 |
+
title="Pie Chart: Comment Sentiments",
|
613 |
+
color="Sentiment", # Color slices based on the 'Sentiment' category
|
614 |
+
color_discrete_map=color_map,
|
615 |
+
) # Apply custom colors
|
616 |
+
|
617 |
+
fig_pie.update_traces(
|
618 |
+
textposition="inside",
|
619 |
+
textinfo="percent+label",
|
620 |
+
hovertemplate="Sentiment: %{label}<br>Count: %{value}<br>Percentage: %{percent}",
|
621 |
+
)
|
622 |
+
|
623 |
+
fig_pie.update_layout(
|
624 |
+
uniformtext_minsize=16, uniformtext_mode="hide"
|
625 |
+
)
|
626 |
+
|
627 |
+
st.plotly_chart(fig_pie, use_container_width=True)
|
628 |
+
|
629 |
+
# Bar Chart (Using Plotly for consistent coloring)
|
630 |
+
fig_bar = px.bar(
|
631 |
+
sentiment_counts_df_for_plot, # Use the filtered DataFrame
|
632 |
+
x="Sentiment", # Categories on X-axis
|
633 |
+
y="Count", # Values on Y-axis
|
634 |
+
title="Bar Chart: Comment Sentiments",
|
635 |
+
color="Sentiment", # Color bars based on 'Sentiment'
|
636 |
+
color_discrete_map=color_map, # Apply custom colors
|
637 |
+
labels={
|
638 |
+
"Count": "Number of Comments",
|
639 |
+
"Sentiment": "Sentiment Category",
|
640 |
+
},
|
641 |
+
) # Custom labels
|
642 |
+
st.plotly_chart(fig_bar, use_container_width=True)
|
643 |
+
|
644 |
+
except Exception as plot_e:
|
645 |
+
# Fallback if Plotly fails for some reason other than import
|
646 |
+
st.error(
|
647 |
+
f"Sorry, couldn't create Plotly charts: {plot_e}"
|
648 |
+
)
|
649 |
+
st.write(
|
650 |
+
"Displaying basic bar chart instead (default colors):"
|
651 |
+
)
|
652 |
+
st.bar_chart(
|
653 |
+
sentiment_counts_df.set_index("Sentiment")
|
654 |
+
) # Fallback with original (unfiltered for bar)
|
655 |
+
else:
|
656 |
+
# Fallback to Streamlit's basic bar chart if Plotly is not installed
|
657 |
+
st.write(
|
658 |
+
"Displaying basic bar chart (Plotly not installed):"
|
659 |
+
)
|
660 |
+
st.bar_chart(
|
661 |
+
sentiment_counts_df.set_index("Sentiment")
|
662 |
+
) # Basic bar chart
|
663 |
+
else:
|
664 |
+
# This message shows if all sentiment counts are zero
|
665 |
+
st.write(
|
666 |
+
"No sentiment data (Positive, Neutral, Negative all zero) to display in charts."
|
667 |
+
)
|
668 |
+
else:
|
669 |
+
# This message shows if no comments were analyzed successfully
|
670 |
+
st.write(
|
671 |
+
"Not enough valid sentiment data to display distribution charts."
|
672 |
+
)
|
673 |
+
|
674 |
+
# Display comments and their sentiments
|
675 |
+
if comments_data:
|
676 |
+
st.subheader(
|
677 |
+
f"🔍 Analyzed Comments (showing first {len(comments_data)} results)"
|
678 |
+
)
|
679 |
+
comments_display_df = pd.DataFrame(comments_data)
|
680 |
+
|
681 |
+
if "Confidence" in comments_display_df.columns:
|
682 |
+
try:
|
683 |
+
# Format as percentage with 1 decimal place
|
684 |
+
comments_display_df["Confidence"] = comments_display_df[
|
685 |
+
"Confidence"
|
686 |
+
].map("{:.1%}".format)
|
687 |
+
except (TypeError, ValueError):
|
688 |
+
st.warning(
|
689 |
+
"Could not format confidence scores."
|
690 |
+
) # Handle potential errors if confidence is not numeric
|
691 |
+
|
692 |
+
st.dataframe(
|
693 |
+
comments_display_df, use_container_width=True, height=400
|
694 |
+
)
|
695 |
+
else:
|
696 |
+
st.write("No comments were analyzed to display.")
|
697 |
+
# else: # analyze_youtube_video already handles its own errors by showing st.error
|
698 |
+
# st.info("Could not complete analysis. Please check the URL or try again.")
|
699 |
+
else:
|
700 |
+
# If user clicks button without entering URL
|
701 |
+
st.warning("Please enter a YouTube URL or Video ID first!")
|
702 |
+
|
703 |
+
with tab_twitter:
|
704 |
+
st.header("Twitter/X Post Analysis")
|
705 |
+
st.info("This feature is currently under construction. Please check back later!")
|
706 |
+
# Placeholder for future Twitter input
|
707 |
+
# twitter_url_input = st.text_input("Enter Twitter/X Post URL:", key="twitter_url_input_key")
|
708 |
+
# if st.button("Analyze Tweets", key="twitter_analyze_button_key"):
|
709 |
+
# st.write("Imagine amazing Twitter analysis happening here... Tweet tweet!")
|
src/__init__.py
ADDED
File without changes
|
src/youtube.py
CHANGED
@@ -1,21 +1,14 @@
|
|
1 |
import os
|
2 |
import googleapiclient.discovery
|
3 |
import googleapiclient.errors
|
|
|
4 |
|
5 |
# from dotenv import load_dotenv
|
6 |
import streamlit as st
|
7 |
|
8 |
-
|
9 |
-
|
10 |
# api_key = st.secrets["API_KEY"]
|
11 |
-
try:
|
12 |
-
api_key = os.environ["API_KEY"]
|
13 |
-
# Sử dụng api_key ở đây
|
14 |
-
except KeyError:
|
15 |
-
st.error(
|
16 |
-
"Lỗi: Secret 'API_KEY' chưa được cấu hình trong Hugging Face Space Settings."
|
17 |
-
)
|
18 |
-
st.stop() # Hoặc xử lý lỗi theo cách khác
|
19 |
|
20 |
|
21 |
def get_comments(youtube, **kwargs):
|
|
|
1 |
import os
|
2 |
import googleapiclient.discovery
|
3 |
import googleapiclient.errors
|
4 |
+
from dotenv import load_dotenv
|
5 |
|
6 |
# from dotenv import load_dotenv
|
7 |
import streamlit as st
|
8 |
|
9 |
+
load_dotenv()
|
10 |
+
api_key = os.getenv("API_KEY")
|
11 |
# api_key = st.secrets["API_KEY"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
def get_comments(youtube, **kwargs):
|