Spaces:
Build error
Build error
import os | |
import sys | |
from src.exception import CustomException | |
from src.logger import logging | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from dataclasses import dataclass | |
from src.components.data_transformation import DataTransformation | |
from src.components.data_transformation import DataTransformationConfig | |
from src.components.model_trainer import ModelTrainer | |
from src.components.model_trainer import ModelTrainerConfig | |
class DataIngestionConfig: | |
raw_data_path: str = os.path.join("artifacts", "data.csv") | |
train_data_path: str = os.path.join("artifacts", "train.csv") | |
test_data_path: str = os.path.join("artifacts", "test.csv") | |
class DataIngestion: | |
def __init__(self) -> None: | |
self.ingestion_config = DataIngestionConfig() | |
def initiate_data_ingestion(self): | |
logging.info("Entered data ingestion medthod or component") | |
try: | |
df = pd.read_csv("notebook/data/stud.csv") | |
logging.info("Read the dataset as dataframe") | |
os.makedirs( | |
os.path.dirname(self.ingestion_config.train_data_path), exist_ok=True | |
) | |
df.to_csv(self.ingestion_config.raw_data_path, index=False, header=True) | |
logging.info("Train test split initiated") | |
train_set, test_set = train_test_split(df, test_size=0.2, random_state=42) | |
train_set.to_csv( | |
self.ingestion_config.train_data_path, index=False, header=True | |
) | |
test_set.to_csv( | |
self.ingestion_config.test_data_path, index=False, header=True | |
) | |
logging.info("Ingestion of the data is completed") | |
return ( | |
self.ingestion_config.train_data_path, | |
self.ingestion_config.test_data_path, | |
) | |
except Exception as e: | |
raise CustomException(e, sys) | |
if __name__ == "__main__": | |
obj = DataIngestion() | |
train_data, test_data = obj.initiate_data_ingestion() | |
data_transformation = DataTransformation() | |
train_arr, test_arr, _ = data_transformation.initiate_data_transformation( | |
train_data, test_data | |
) | |
model_trainer = ModelTrainer() | |
print(model_trainer.initiate_model_trainer(train_arr, test_arr)) | |