File size: 2,294 Bytes
3c8c0e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import sys
from src.exception import CustomException
from src.logger import logging
import pandas as pd
from sklearn.model_selection import train_test_split
from dataclasses import dataclass
from src.components.data_transformation import DataTransformation
from src.components.data_transformation import DataTransformationConfig
from src.components.model_trainer import ModelTrainer
from src.components.model_trainer import ModelTrainerConfig


@dataclass
class DataIngestionConfig:
    raw_data_path: str = os.path.join("artifacts", "data.csv")
    train_data_path: str = os.path.join("artifacts", "train.csv")
    test_data_path: str = os.path.join("artifacts", "test.csv")


class DataIngestion:
    def __init__(self) -> None:
        self.ingestion_config = DataIngestionConfig()

    def initiate_data_ingestion(self):
        logging.info("Entered data ingestion medthod or component")
        try:
            df = pd.read_csv("notebook/data/stud.csv")
            logging.info("Read the dataset as dataframe")

            os.makedirs(
                os.path.dirname(self.ingestion_config.train_data_path), exist_ok=True
            )

            df.to_csv(self.ingestion_config.raw_data_path, index=False, header=True)

            logging.info("Train test split initiated")
            train_set, test_set = train_test_split(df, test_size=0.2, random_state=42)

            train_set.to_csv(
                self.ingestion_config.train_data_path, index=False, header=True
            )
            test_set.to_csv(
                self.ingestion_config.test_data_path, index=False, header=True
            )

            logging.info("Ingestion of the data is completed")

            return (
                self.ingestion_config.train_data_path,
                self.ingestion_config.test_data_path,
            )
        except Exception as e:
            raise CustomException(e, sys)


if __name__ == "__main__":
    obj = DataIngestion()
    train_data, test_data = obj.initiate_data_ingestion()

    data_transformation = DataTransformation()
    train_arr, test_arr, _ = data_transformation.initiate_data_transformation(
        train_data, test_data
    )

    model_trainer = ModelTrainer()
    print(model_trainer.initiate_model_trainer(train_arr, test_arr))