Akhil Koduri
Update app.py
1895e5d verified
import streamlit as st
import pandas as pd
import fitz # PyMuPDF
from transformers import pipeline
# Load pre-trained model and tokenizer from Hugging Face
model_name = "google-bert/bert-base-uncased"
pipe = pipeline("text-classification", model=model_name)
# Custom labels for your classification task
labels = {
"LABEL_0": "Negative",
"LABEL_1": "Positive"
}
# Streamlit app
st.title("BERT Text Classification")
st.write("This app uses a pre-trained BERT model to classify text into positive or negative sentiment.")
# Input text area
input_text = st.text_area("Enter text to classify")
def classify_text(text):
result = pipe(text)[0]
label = labels.get(result['label'], result['label'])
score = result['score']
# Adjust classification based on score
if score < 0.75:
label = "Negative"
return label, score
if st.button("Classify"):
if input_text:
# Perform classification
label, score = classify_text(input_text)
st.write(f"**Predicted Class:** {label}")
st.write(f"**Confidence:** {score:.4f}")
else:
st.write("Please enter some text to classify.")
# File upload section
st.write("Upload a file for classification:")
uploaded_file = st.file_uploader("Choose a file", type=["csv", "pdf"])
if uploaded_file is not None:
try:
if uploaded_file.type == "text/csv":
# Process CSV file
df = pd.read_csv(uploaded_file, encoding='utf-8')
if 'text' not in df.columns:
st.write("The CSV file must contain a 'text' column.")
else:
df['Prediction'] = df['text'].apply(lambda x: classify_text(x)[0])
df['Confidence'] = df['text'].apply(lambda x: classify_text(x)[1])
st.write(df)
elif uploaded_file.type == "application/pdf":
# Process PDF file
with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
text = ""
for page in doc:
text += page.get_text()
# Perform classification
label, score = classify_text(text)
st.write(f"**Predicted Class for PDF:** {label}")
st.write(f"**Confidence:** {score:.4f}")
except Exception as e:
st.error(f"Error: {e}")