Akhil Koduri
Update app.py
d791bac verified
raw
history blame
961 Bytes
import streamlit as st
from transformers import pipeline
# Load pre-trained model and tokenizer from Hugging Face
model_name = "google-bert/bert-base-uncased"
pipe = pipeline("text-classification", model=model_name)
# Custom labels for your classification task
labels = {
"LABEL_0": "Negative",
"LABEL_1": "Positive"
}
# Streamlit app
st.title("Text Classification")
st.write("This app uses a pre-trained BERT model to classify text into positive or negative sentiment.")
input_text = st.text_area("Enter text to classify")
if st.button("Classify"):
if input_text:
# Perform classification
result = pipe(input_text)
# Extract label and score
label = labels.get(result[0]['label'], result[0]['label'])
score = result[0]['score']
st.write(f"**Predicted Class:** {label}")
st.write(f"**Confidence:** {score:.4f}")
else:
st.write("Please enter some text to classify.")