Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# Load pre-trained model and tokenizer from Hugging Face | |
model_name = "google-bert/bert-base-uncased" | |
pipe = pipeline("text-classification", model=model_name) | |
# Custom labels for your classification task | |
labels = { | |
"LABEL_0": "Negative", | |
"LABEL_1": "Positive" | |
} | |
# Streamlit app | |
st.title("Text Classification") | |
st.write("This app uses a pre-trained BERT model to classify text into positive or negative sentiment.") | |
input_text = st.text_area("Enter text to classify") | |
if st.button("Classify"): | |
if input_text: | |
# Perform classification | |
result = pipe(input_text) | |
# Extract label and score | |
label = labels.get(result[0]['label'], result[0]['label']) | |
score = result[0]['score'] | |
st.write(f"**Predicted Class:** {label}") | |
st.write(f"**Confidence:** {score:.4f}") | |
else: | |
st.write("Please enter some text to classify.") | |