Commit
·
c474963
1
Parent(s):
63682de
Update app/fastapi_server.py
Browse filesAdding LightGBM for Ensemble Model
- app/fastapi_server.py +396 -1205
app/fastapi_server.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import json
|
2 |
import time
|
3 |
import joblib
|
@@ -24,6 +26,13 @@ from fastapi.middleware.trustedhost import TrustedHostMiddleware
|
|
24 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
25 |
from fastapi import FastAPI, HTTPException, Depends, Request, BackgroundTasks, status
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
from data.data_validator import (
|
28 |
DataValidationPipeline, validate_text, validate_articles_list,
|
29 |
get_validation_stats, generate_quality_report
|
@@ -39,12 +48,10 @@ from deployment.traffic_router import TrafficRouter
|
|
39 |
from deployment.model_registry import ModelRegistry
|
40 |
from deployment.blue_green_manager import BlueGreenDeploymentManager
|
41 |
|
42 |
-
|
43 |
-
# Import the new path manager
|
44 |
try:
|
45 |
from path_config import path_manager
|
46 |
except ImportError:
|
47 |
-
# Fallback for development environments
|
48 |
import sys
|
49 |
import os
|
50 |
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
@@ -53,26 +60,21 @@ except ImportError:
|
|
53 |
# Configure logging with fallback for permission issues
|
54 |
def setup_logging():
|
55 |
"""Setup logging with fallback for environments with restricted file access"""
|
56 |
-
handlers = [logging.StreamHandler()]
|
57 |
|
58 |
try:
|
59 |
-
# Try to create log file in the logs directory
|
60 |
log_file_path = path_manager.get_logs_path('fastapi_server.log')
|
61 |
log_file_path.parent.mkdir(parents=True, exist_ok=True)
|
62 |
|
63 |
-
# Test if we can write to the file
|
64 |
test_handler = logging.FileHandler(log_file_path)
|
65 |
test_handler.close()
|
66 |
|
67 |
-
# If successful, add file handler
|
68 |
handlers.append(logging.FileHandler(log_file_path))
|
69 |
-
print(f"Logging to file: {log_file_path}")
|
70 |
|
71 |
except (PermissionError, OSError) as e:
|
72 |
-
# If file logging fails, just use console logging
|
73 |
print(f"Cannot create log file, using console only: {e}")
|
74 |
|
75 |
-
# Try alternative locations for file logging
|
76 |
try:
|
77 |
import tempfile
|
78 |
temp_log = tempfile.NamedTemporaryFile(mode='w', suffix='.log', delete=False, prefix='fastapi_')
|
@@ -84,7 +86,7 @@ def setup_logging():
|
|
84 |
|
85 |
return handlers
|
86 |
|
87 |
-
# Setup logging
|
88 |
logging.basicConfig(
|
89 |
level=logging.INFO,
|
90 |
format='%(asctime)s - %(levelname)s - %(message)s',
|
@@ -92,7 +94,7 @@ logging.basicConfig(
|
|
92 |
)
|
93 |
logger = logging.getLogger(__name__)
|
94 |
|
95 |
-
#
|
96 |
try:
|
97 |
path_manager.log_environment_info()
|
98 |
except Exception as e:
|
@@ -105,49 +107,86 @@ security = HTTPBearer(auto_error=False)
|
|
105 |
rate_limit_storage = defaultdict(list)
|
106 |
|
107 |
|
108 |
-
class
|
109 |
-
"""
|
110 |
|
111 |
def __init__(self):
|
112 |
self.model = None
|
113 |
self.vectorizer = None
|
114 |
self.pipeline = None
|
|
|
115 |
self.model_metadata = {}
|
|
|
116 |
self.last_health_check = None
|
117 |
self.health_status = "unknown"
|
|
|
|
|
118 |
self.load_model()
|
119 |
|
120 |
def load_model(self):
|
121 |
-
"""Load model with comprehensive error handling and
|
122 |
try:
|
123 |
-
logger.info("Loading ML model...")
|
124 |
|
125 |
# Initialize all to None first
|
126 |
self.model = None
|
127 |
self.vectorizer = None
|
128 |
self.pipeline = None
|
|
|
|
|
129 |
|
130 |
-
#
|
131 |
-
|
132 |
-
|
133 |
|
134 |
-
if
|
135 |
try:
|
136 |
-
self.
|
137 |
-
#
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
except Exception as e:
|
145 |
-
logger.warning(f"Failed to load
|
146 |
-
self.
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
-
# If pipeline loading failed
|
151 |
if self.pipeline is None:
|
152 |
model_path = path_manager.get_model_file_path()
|
153 |
vectorizer_path = path_manager.get_vectorizer_path()
|
@@ -159,35 +198,52 @@ class ModelManager:
|
|
159 |
try:
|
160 |
self.model = joblib.load(model_path)
|
161 |
self.vectorizer = joblib.load(vectorizer_path)
|
|
|
162 |
logger.info("Loaded model components successfully")
|
163 |
except Exception as e:
|
164 |
logger.error(f"Failed to load individual components: {e}")
|
165 |
raise e
|
166 |
else:
|
167 |
-
raise FileNotFoundError(f"No model files found
|
168 |
-
|
169 |
-
# Verify we have what we need for predictions
|
170 |
-
if self.pipeline is None and (self.model is None or self.vectorizer is None):
|
171 |
-
raise ValueError("Neither complete pipeline nor individual model components are available")
|
172 |
|
173 |
# Load metadata
|
174 |
metadata_path = path_manager.get_metadata_path()
|
175 |
if metadata_path.exists():
|
176 |
with open(metadata_path, 'r') as f:
|
177 |
self.model_metadata = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
logger.info(f"Loaded model metadata: {self.model_metadata.get('model_version', 'Unknown')}")
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
else:
|
180 |
logger.warning(f"Metadata file not found at: {metadata_path}")
|
181 |
self.model_metadata = {"model_version": "unknown"}
|
182 |
|
|
|
|
|
|
|
|
|
183 |
self.health_status = "healthy"
|
184 |
self.last_health_check = datetime.now()
|
185 |
|
186 |
# Log what was successfully loaded
|
187 |
logger.info(f"Model loading summary:")
|
188 |
logger.info(f" Pipeline available: {self.pipeline is not None}")
|
189 |
-
logger.info(f"
|
190 |
logger.info(f" Vectorizer available: {self.vectorizer is not None}")
|
|
|
|
|
|
|
191 |
|
192 |
except Exception as e:
|
193 |
logger.error(f"Failed to load model: {e}")
|
@@ -196,15 +252,21 @@ class ModelManager:
|
|
196 |
self.model = None
|
197 |
self.vectorizer = None
|
198 |
self.pipeline = None
|
|
|
199 |
|
200 |
def predict(self, text: str) -> tuple[str, float]:
|
201 |
-
"""Make prediction with
|
202 |
try:
|
203 |
if self.pipeline:
|
204 |
-
# Use pipeline for prediction
|
205 |
prediction = self.pipeline.predict([text])[0]
|
206 |
probabilities = self.pipeline.predict_proba([text])[0]
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
208 |
elif self.model and self.vectorizer:
|
209 |
# Use individual components
|
210 |
X = self.vectorizer.transform([text])
|
@@ -231,7 +293,7 @@ class ModelManager:
|
|
231 |
)
|
232 |
|
233 |
def health_check(self) -> Dict[str, Any]:
|
234 |
-
"""Perform health check"""
|
235 |
try:
|
236 |
# Test prediction with sample text
|
237 |
test_text = "This is a test article for health check purposes."
|
@@ -240,26 +302,44 @@ class ModelManager:
|
|
240 |
self.health_status = "healthy"
|
241 |
self.last_health_check = datetime.now()
|
242 |
|
243 |
-
|
244 |
"status": "healthy",
|
245 |
"last_check": self.last_health_check.isoformat(),
|
246 |
"model_available": self.model is not None,
|
247 |
"vectorizer_available": self.vectorizer is not None,
|
248 |
"pipeline_available": self.pipeline is not None,
|
|
|
|
|
|
|
249 |
"test_prediction": {"label": label, "confidence": confidence},
|
250 |
"environment": path_manager.environment,
|
251 |
-
"
|
252 |
-
"
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
255 |
"file_exists": {
|
|
|
|
|
256 |
"model": path_manager.get_model_file_path().exists(),
|
257 |
"vectorizer": path_manager.get_vectorizer_path().exists(),
|
258 |
-
"
|
259 |
-
"
|
260 |
}
|
261 |
}
|
262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
except Exception as e:
|
264 |
self.health_status = "unhealthy"
|
265 |
self.last_health_check = datetime.now()
|
@@ -271,21 +351,15 @@ class ModelManager:
|
|
271 |
"model_available": self.model is not None,
|
272 |
"vectorizer_available": self.vectorizer is not None,
|
273 |
"pipeline_available": self.pipeline is not None,
|
|
|
|
|
|
|
274 |
"environment": path_manager.environment,
|
275 |
-
"
|
276 |
-
"vectorizer_path": str(path_manager.get_vectorizer_path()),
|
277 |
-
"pipeline_path": str(path_manager.get_pipeline_path()),
|
278 |
-
"data_path": str(path_manager.get_data_path()),
|
279 |
-
"file_exists": {
|
280 |
-
"model": path_manager.get_model_file_path().exists(),
|
281 |
-
"vectorizer": path_manager.get_vectorizer_path().exists(),
|
282 |
-
"pipeline": path_manager.get_pipeline_path().exists(),
|
283 |
-
"metadata": path_manager.get_metadata_path().exists()
|
284 |
-
}
|
285 |
}
|
286 |
|
287 |
|
288 |
-
# Background task functions
|
289 |
async def log_prediction(text: str, prediction: str, confidence: float, client_ip: str, processing_time: float):
|
290 |
"""Log prediction details with error handling for file access"""
|
291 |
try:
|
@@ -296,7 +370,9 @@ async def log_prediction(text: str, prediction: str, confidence: float, client_i
|
|
296 |
"prediction": prediction,
|
297 |
"confidence": confidence,
|
298 |
"processing_time": processing_time,
|
299 |
-
"text_hash": hashlib.md5(text.encode()).hexdigest()
|
|
|
|
|
300 |
}
|
301 |
|
302 |
# Try to save to log file
|
@@ -325,7 +401,6 @@ async def log_prediction(text: str, prediction: str, confidence: float, client_i
|
|
325 |
await f.write(json.dumps(logs, indent=2))
|
326 |
|
327 |
except (PermissionError, OSError) as e:
|
328 |
-
# If file logging fails, just log to console
|
329 |
logger.warning(f"Cannot write prediction log to file: {e}")
|
330 |
logger.info(f"Prediction logged: {json.dumps(log_entry)}")
|
331 |
|
@@ -333,27 +408,8 @@ async def log_prediction(text: str, prediction: str, confidence: float, client_i
|
|
333 |
logger.error(f"Failed to log prediction: {e}")
|
334 |
|
335 |
|
336 |
-
async def log_batch_prediction(total_texts: int, successful_predictions: int, client_ip: str, processing_time: float):
|
337 |
-
"""Log batch prediction details"""
|
338 |
-
try:
|
339 |
-
log_entry = {
|
340 |
-
"timestamp": datetime.now().isoformat(),
|
341 |
-
"type": "batch_prediction",
|
342 |
-
"client_ip": client_ip,
|
343 |
-
"total_texts": total_texts,
|
344 |
-
"successful_predictions": successful_predictions,
|
345 |
-
"processing_time": processing_time,
|
346 |
-
"success_rate": successful_predictions / total_texts if total_texts > 0 else 0
|
347 |
-
}
|
348 |
-
|
349 |
-
logger.info(f"Batch prediction logged: {json.dumps(log_entry)}")
|
350 |
-
|
351 |
-
except Exception as e:
|
352 |
-
logger.error(f"Failed to log batch prediction: {e}")
|
353 |
-
|
354 |
-
|
355 |
# Global variables
|
356 |
-
model_manager =
|
357 |
|
358 |
# Initialize automation manager
|
359 |
automation_manager = None
|
@@ -363,17 +419,21 @@ deployment_manager = None
|
|
363 |
traffic_router = None
|
364 |
model_registry = None
|
365 |
|
366 |
-
|
367 |
@asynccontextmanager
|
368 |
async def lifespan(app: FastAPI):
|
369 |
-
"""Manage application lifespan with
|
370 |
global deployment_manager, traffic_router, model_registry
|
371 |
|
372 |
-
logger.info("Starting FastAPI application...")
|
373 |
|
374 |
# Startup tasks
|
375 |
model_manager.load_model()
|
376 |
|
|
|
|
|
|
|
|
|
|
|
377 |
# Initialize deployment components
|
378 |
try:
|
379 |
deployment_manager = BlueGreenDeploymentManager()
|
@@ -383,72 +443,37 @@ async def lifespan(app: FastAPI):
|
|
383 |
except Exception as e:
|
384 |
logger.error(f"Failed to initialize deployment system: {e}")
|
385 |
|
386 |
-
# Initialize monitoring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
|
388 |
yield
|
389 |
|
390 |
# Shutdown tasks
|
391 |
-
logger.info("Shutting down FastAPI application...")
|
392 |
-
|
393 |
-
# Initialize monitoring components
|
394 |
-
prediction_monitor = PredictionMonitor(base_dir=Path("/tmp"))
|
395 |
-
metrics_collector = MetricsCollector(base_dir=Path("/tmp"))
|
396 |
-
alert_system = AlertSystem(base_dir=Path("/tmp"))
|
397 |
-
|
398 |
-
# Start monitoring
|
399 |
-
prediction_monitor.start_monitoring()
|
400 |
-
|
401 |
-
alert_system.add_notification_handler("console", console_notification_handler)
|
402 |
-
|
403 |
-
|
404 |
-
@asynccontextmanager
|
405 |
-
async def lifespan(app: FastAPI):
|
406 |
-
"""Manage application lifespan"""
|
407 |
-
logger.info("Starting FastAPI application...")
|
408 |
-
|
409 |
-
# Startup tasks
|
410 |
-
model_manager.load_model()
|
411 |
-
|
412 |
-
# Schedule periodic health checks
|
413 |
-
asyncio.create_task(periodic_health_check())
|
414 |
-
|
415 |
-
yield
|
416 |
-
|
417 |
-
# Shutdown tasks
|
418 |
-
logger.info("Shutting down FastAPI application...")
|
419 |
-
|
420 |
-
|
421 |
-
# Background tasks
|
422 |
-
async def periodic_health_check():
|
423 |
-
"""Periodic health check"""
|
424 |
-
while True:
|
425 |
-
try:
|
426 |
-
await asyncio.sleep(300) # Check every 5 minutes
|
427 |
-
health_status = model_manager.health_check()
|
428 |
-
|
429 |
-
if health_status["status"] == "unhealthy":
|
430 |
-
logger.warning(
|
431 |
-
"Model health check failed, attempting to reload...")
|
432 |
-
model_manager.load_model()
|
433 |
-
|
434 |
-
except Exception as e:
|
435 |
-
logger.error(f"Periodic health check failed: {e}")
|
436 |
-
|
437 |
|
438 |
# Create FastAPI app
|
439 |
app = FastAPI(
|
440 |
-
title="Fake News Detection API",
|
441 |
-
description="Production-ready API for fake news detection with
|
442 |
-
version="2.
|
443 |
docs_url="/docs",
|
444 |
redoc_url="/redoc",
|
445 |
lifespan=lifespan
|
446 |
)
|
447 |
|
448 |
-
# Add middleware
|
449 |
app.add_middleware(
|
450 |
CORSMiddleware,
|
451 |
-
allow_origins=["*"],
|
452 |
allow_credentials=True,
|
453 |
allow_methods=["*"],
|
454 |
allow_headers=["*"],
|
@@ -456,38 +481,31 @@ app.add_middleware(
|
|
456 |
|
457 |
app.add_middleware(
|
458 |
TrustedHostMiddleware,
|
459 |
-
allowed_hosts=["*"]
|
460 |
)
|
461 |
|
462 |
-
#
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
)
|
473 |
-
|
474 |
-
# Add security definitions
|
475 |
-
openapi_schema["components"]["securitySchemes"] = {
|
476 |
-
"Bearer": {
|
477 |
-
"type": "http",
|
478 |
-
"scheme": "bearer",
|
479 |
-
"bearerFormat": "JWT",
|
480 |
-
}
|
481 |
-
}
|
482 |
-
|
483 |
-
app.openapi_schema = openapi_schema
|
484 |
-
return app.openapi_schema
|
485 |
-
|
486 |
-
# Set the custom OpenAPI function
|
487 |
-
app.openapi = custom_openapi
|
488 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
489 |
|
490 |
-
# Request
|
491 |
class PredictionRequest(BaseModel):
|
492 |
text: str = Field(..., min_length=1, max_length=10000,
|
493 |
description="Text to analyze for fake news detection")
|
@@ -496,67 +514,15 @@ class PredictionRequest(BaseModel):
|
|
496 |
def validate_text(cls, v):
|
497 |
if not v or not v.strip():
|
498 |
raise ValueError('Text cannot be empty')
|
499 |
-
|
500 |
-
# Basic content validation
|
501 |
if len(v.strip()) < 10:
|
502 |
raise ValueError('Text must be at least 10 characters long')
|
503 |
-
|
504 |
-
# Check for suspicious patterns
|
505 |
suspicious_patterns = ['<script', 'javascript:', 'data:']
|
506 |
if any(pattern in v.lower() for pattern in suspicious_patterns):
|
507 |
raise ValueError('Text contains suspicious content')
|
508 |
-
|
509 |
return v.strip()
|
510 |
|
511 |
|
512 |
-
|
513 |
-
prediction: str = Field(...,
|
514 |
-
description="Prediction result: 'Real' or 'Fake'")
|
515 |
-
confidence: float = Field(..., ge=0.0, le=1.0,
|
516 |
-
description="Confidence score between 0 and 1")
|
517 |
-
model_version: str = Field(...,
|
518 |
-
description="Version of the model used for prediction")
|
519 |
-
timestamp: str = Field(..., description="Timestamp of the prediction")
|
520 |
-
processing_time: float = Field(...,
|
521 |
-
description="Time taken for processing in seconds")
|
522 |
-
|
523 |
-
|
524 |
-
class BatchPredictionRequest(BaseModel):
|
525 |
-
texts: List[str] = Field(..., min_items=1, max_items=10,
|
526 |
-
description="List of texts to analyze")
|
527 |
-
|
528 |
-
@validator('texts')
|
529 |
-
def validate_texts(cls, v):
|
530 |
-
if not v:
|
531 |
-
raise ValueError('Texts list cannot be empty')
|
532 |
-
|
533 |
-
for text in v:
|
534 |
-
if not text or not text.strip():
|
535 |
-
raise ValueError('All texts must be non-empty')
|
536 |
-
|
537 |
-
if len(text.strip()) < 10:
|
538 |
-
raise ValueError(
|
539 |
-
'All texts must be at least 10 characters long')
|
540 |
-
|
541 |
-
return [text.strip() for text in v]
|
542 |
-
|
543 |
-
|
544 |
-
class BatchPredictionResponse(BaseModel):
|
545 |
-
predictions: List[PredictionResponse]
|
546 |
-
total_count: int
|
547 |
-
processing_time: float
|
548 |
-
|
549 |
-
|
550 |
-
class HealthResponse(BaseModel):
|
551 |
-
status: str
|
552 |
-
timestamp: str
|
553 |
-
model_health: Dict[str, Any]
|
554 |
-
system_health: Dict[str, Any]
|
555 |
-
api_health: Dict[str, Any]
|
556 |
-
environment_info: Dict[str, Any]
|
557 |
-
|
558 |
-
|
559 |
-
# Rate limiting
|
560 |
async def rate_limit_check(request: Request):
|
561 |
"""Check rate limits"""
|
562 |
client_ip = request.client.host
|
@@ -565,7 +531,7 @@ async def rate_limit_check(request: Request):
|
|
565 |
# Clean old entries
|
566 |
rate_limit_storage[client_ip] = [
|
567 |
timestamp for timestamp in rate_limit_storage[client_ip]
|
568 |
-
if current_time - timestamp < 3600
|
569 |
]
|
570 |
|
571 |
# Check rate limit (100 requests per hour)
|
@@ -579,14 +545,11 @@ async def rate_limit_check(request: Request):
|
|
579 |
rate_limit_storage[client_ip].append(current_time)
|
580 |
|
581 |
|
582 |
-
# Logging middleware
|
583 |
@app.middleware("http")
|
584 |
async def log_requests(request: Request, call_next):
|
585 |
-
"""Log all requests"""
|
586 |
start_time = time.time()
|
587 |
-
|
588 |
response = await call_next(request)
|
589 |
-
|
590 |
process_time = time.time() - start_time
|
591 |
|
592 |
log_data = {
|
@@ -595,76 +558,42 @@ async def log_requests(request: Request, call_next):
|
|
595 |
"client_ip": request.client.host,
|
596 |
"status_code": response.status_code,
|
597 |
"process_time": process_time,
|
598 |
-
"timestamp": datetime.now().isoformat()
|
|
|
|
|
599 |
}
|
600 |
|
601 |
logger.info(f"Request: {json.dumps(log_data)}")
|
602 |
-
|
603 |
return response
|
604 |
|
605 |
|
606 |
-
#
|
607 |
-
@app.
|
608 |
-
async def http_exception_handler(request: Request, exc: HTTPException):
|
609 |
-
"""Handle HTTP exceptions"""
|
610 |
-
error_data = {
|
611 |
-
"error": True,
|
612 |
-
"message": exc.detail,
|
613 |
-
"status_code": exc.status_code,
|
614 |
-
"timestamp": datetime.now().isoformat(),
|
615 |
-
"path": request.url.path
|
616 |
-
}
|
617 |
-
|
618 |
-
logger.error(f"HTTP Exception: {json.dumps(error_data)}")
|
619 |
-
|
620 |
-
return JSONResponse(
|
621 |
-
status_code=exc.status_code,
|
622 |
-
content=error_data
|
623 |
-
)
|
624 |
-
|
625 |
-
|
626 |
-
@app.exception_handler(Exception)
|
627 |
-
async def general_exception_handler(request: Request, exc: Exception):
|
628 |
-
"""Handle general exceptions"""
|
629 |
-
error_data = {
|
630 |
-
"error": True,
|
631 |
-
"message": "Internal server error",
|
632 |
-
"timestamp": datetime.now().isoformat(),
|
633 |
-
"path": request.url.path
|
634 |
-
}
|
635 |
-
|
636 |
-
logger.error(f"General Exception: {str(exc)}\n{traceback.format_exc()}")
|
637 |
-
|
638 |
-
return JSONResponse(
|
639 |
-
status_code=500,
|
640 |
-
content=error_data
|
641 |
-
)
|
642 |
-
|
643 |
-
|
644 |
-
# API Routes
|
645 |
-
@app.get("/", response_model=Dict[str, str])
|
646 |
async def root():
|
647 |
-
"""Root endpoint"""
|
648 |
return {
|
649 |
-
"message": "Fake News Detection API",
|
650 |
-
"version": "2.
|
651 |
"environment": path_manager.environment,
|
|
|
|
|
|
|
652 |
"documentation": "/docs",
|
653 |
"health_check": "/health"
|
654 |
}
|
655 |
|
656 |
|
657 |
-
@app.post("/predict", response_model=
|
658 |
async def predict(
|
659 |
request: PredictionRequest,
|
660 |
background_tasks: BackgroundTasks,
|
661 |
http_request: Request,
|
662 |
_: None = Depends(rate_limit_check)
|
663 |
-
|
664 |
"""
|
665 |
-
|
666 |
- **text**: The news article text to analyze
|
667 |
-
- **returns**:
|
668 |
"""
|
669 |
start_time = time.time()
|
670 |
client_ip = http_request.client.host
|
@@ -678,62 +607,49 @@ async def predict(
|
|
678 |
detail="Model is not available. Please try again later."
|
679 |
)
|
680 |
|
681 |
-
#
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
# Extract results from traffic router response
|
694 |
-
label = result['prediction']
|
695 |
-
confidence = result['confidence']
|
696 |
-
processing_time = result['processing_time']
|
697 |
-
|
698 |
-
logger.debug(f"Used {environment} environment for prediction")
|
699 |
-
|
700 |
-
except Exception as e:
|
701 |
-
logger.warning(f"Traffic router failed, falling back to model manager: {e}")
|
702 |
-
# Fallback to original model manager
|
703 |
-
label, confidence = model_manager.predict(request.text)
|
704 |
-
processing_time = time.time() - start_time
|
705 |
-
environment = "blue" # Default fallback
|
706 |
-
else:
|
707 |
-
# Fallback to original model manager
|
708 |
-
label, confidence = model_manager.predict(request.text)
|
709 |
-
processing_time = time.time() - start_time
|
710 |
-
environment = "blue" # Default when no traffic router
|
711 |
|
712 |
# Record prediction for monitoring
|
713 |
-
prediction_monitor
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
|
|
722 |
|
723 |
# Record API request metrics
|
724 |
-
metrics_collector
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
|
|
731 |
|
732 |
-
# Create response
|
733 |
-
response =
|
734 |
prediction=label,
|
735 |
confidence=confidence,
|
736 |
model_version=model_manager.model_metadata.get('model_version', 'unknown'),
|
|
|
|
|
|
|
737 |
timestamp=datetime.now().isoformat(),
|
738 |
processing_time=processing_time
|
739 |
)
|
@@ -753,36 +669,40 @@ async def predict(
|
|
753 |
except HTTPException:
|
754 |
# Record error for failed requests
|
755 |
processing_time = time.time() - start_time
|
756 |
-
prediction_monitor
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
|
|
|
|
768 |
raise
|
769 |
except Exception as e:
|
770 |
processing_time = time.time() - start_time
|
771 |
|
772 |
# Record error
|
773 |
-
prediction_monitor
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
|
|
778 |
|
779 |
-
metrics_collector
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
|
|
786 |
|
787 |
logger.error(f"Prediction failed: {e}")
|
788 |
raise HTTPException(
|
@@ -791,90 +711,11 @@ async def predict(
|
|
791 |
)
|
792 |
|
793 |
|
794 |
-
@app.
|
795 |
-
async def predict_batch(
|
796 |
-
request: BatchPredictionRequest,
|
797 |
-
background_tasks: BackgroundTasks,
|
798 |
-
http_request: Request,
|
799 |
-
_: None = Depends(rate_limit_check)
|
800 |
-
):
|
801 |
-
"""
|
802 |
-
Predict multiple news articles in batch
|
803 |
-
- **texts**: List of news article texts to analyze
|
804 |
-
- **returns**: List of prediction results
|
805 |
-
"""
|
806 |
-
start_time = time.time()
|
807 |
-
|
808 |
-
try:
|
809 |
-
# Check model health
|
810 |
-
if model_manager.health_status != "healthy":
|
811 |
-
raise HTTPException(
|
812 |
-
status_code=503,
|
813 |
-
detail="Model is not available. Please try again later."
|
814 |
-
)
|
815 |
-
|
816 |
-
predictions = []
|
817 |
-
|
818 |
-
for text in request.texts:
|
819 |
-
try:
|
820 |
-
label, confidence = model_manager.predict(text)
|
821 |
-
|
822 |
-
prediction = PredictionResponse(
|
823 |
-
prediction=label,
|
824 |
-
confidence=confidence,
|
825 |
-
model_version=model_manager.model_metadata.get(
|
826 |
-
'model_version', 'unknown'),
|
827 |
-
timestamp=datetime.now().isoformat(),
|
828 |
-
processing_time=0.0 # Will be updated with total time
|
829 |
-
)
|
830 |
-
|
831 |
-
predictions.append(prediction)
|
832 |
-
|
833 |
-
except Exception as e:
|
834 |
-
logger.error(f"Batch prediction failed for text: {e}")
|
835 |
-
# Continue with other texts
|
836 |
-
continue
|
837 |
-
|
838 |
-
# Calculate total processing time
|
839 |
-
total_processing_time = time.time() - start_time
|
840 |
-
|
841 |
-
# Update processing time for all predictions
|
842 |
-
for prediction in predictions:
|
843 |
-
prediction.processing_time = total_processing_time / \
|
844 |
-
len(predictions)
|
845 |
-
|
846 |
-
response = BatchPredictionResponse(
|
847 |
-
predictions=predictions,
|
848 |
-
total_count=len(predictions),
|
849 |
-
processing_time=total_processing_time
|
850 |
-
)
|
851 |
-
|
852 |
-
# Log batch prediction (background task)
|
853 |
-
background_tasks.add_task(
|
854 |
-
log_batch_prediction,
|
855 |
-
len(request.texts),
|
856 |
-
len(predictions),
|
857 |
-
http_request.client.host,
|
858 |
-
total_processing_time
|
859 |
-
)
|
860 |
-
|
861 |
-
return response
|
862 |
-
|
863 |
-
except HTTPException:
|
864 |
-
raise
|
865 |
-
except Exception as e:
|
866 |
-
logger.error(f"Batch prediction failed: {e}")
|
867 |
-
raise HTTPException(
|
868 |
-
status_code=500,
|
869 |
-
detail=f"Batch prediction failed: {str(e)}"
|
870 |
-
)
|
871 |
-
|
872 |
-
|
873 |
-
@app.get("/health", response_model=HealthResponse)
|
874 |
async def health_check():
|
875 |
"""
|
876 |
-
|
877 |
-
- **returns**: Detailed health status
|
878 |
"""
|
879 |
try:
|
880 |
# Model health
|
@@ -897,843 +738,193 @@ async def health_check():
|
|
897 |
|
898 |
# Environment info
|
899 |
environment_info = path_manager.get_environment_info()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
900 |
|
901 |
# Overall status
|
902 |
overall_status = "healthy" if model_health["status"] == "healthy" else "unhealthy"
|
903 |
|
904 |
-
return
|
905 |
status=overall_status,
|
906 |
timestamp=datetime.now().isoformat(),
|
907 |
model_health=model_health,
|
908 |
system_health=system_health,
|
909 |
api_health=api_health,
|
910 |
-
environment_info=environment_info
|
|
|
911 |
)
|
912 |
|
913 |
except Exception as e:
|
914 |
logger.error(f"Health check failed: {e}")
|
915 |
-
return
|
916 |
status="unhealthy",
|
917 |
timestamp=datetime.now().isoformat(),
|
918 |
model_health={"status": "unhealthy", "error": str(e)},
|
919 |
system_health={"error": str(e)},
|
920 |
api_health={"error": str(e)},
|
921 |
-
environment_info={"error": str(e)}
|
|
|
922 |
)
|
923 |
|
924 |
|
925 |
-
@app.get("/
|
926 |
-
async def
|
927 |
"""
|
928 |
-
|
929 |
-
- **returns**:
|
930 |
"""
|
931 |
try:
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
# Extract cross-validation information
|
945 |
-
cv_info = metadata.get('cross_validation', {})
|
946 |
-
if cv_info:
|
947 |
-
cv_details = {
|
948 |
-
'cross_validation_available': True,
|
949 |
-
'n_splits': cv_info.get('n_splits', 'Unknown'),
|
950 |
-
'test_scores': cv_info.get('test_scores', {}),
|
951 |
-
'train_scores': cv_info.get('train_scores', {}),
|
952 |
-
'overfitting_score': cv_info.get('overfitting_score', 'Unknown'),
|
953 |
-
'stability_score': cv_info.get('stability_score', 'Unknown'),
|
954 |
-
'individual_fold_results': cv_info.get('individual_fold_results', [])
|
955 |
-
}
|
956 |
-
|
957 |
-
# Add summary statistics
|
958 |
-
test_scores = cv_info.get('test_scores', {})
|
959 |
-
if 'f1' in test_scores:
|
960 |
-
cv_details['cv_f1_summary'] = {
|
961 |
-
'mean': test_scores['f1'].get('mean', 'Unknown'),
|
962 |
-
'std': test_scores['f1'].get('std', 'Unknown'),
|
963 |
-
'min': test_scores['f1'].get('min', 'Unknown'),
|
964 |
-
'max': test_scores['f1'].get('max', 'Unknown'),
|
965 |
-
'scores': test_scores['f1'].get('scores', [])
|
966 |
-
}
|
967 |
-
|
968 |
-
if 'accuracy' in test_scores:
|
969 |
-
cv_details['cv_accuracy_summary'] = {
|
970 |
-
'mean': test_scores['accuracy'].get('mean', 'Unknown'),
|
971 |
-
'std': test_scores['accuracy'].get('std', 'Unknown'),
|
972 |
-
'min': test_scores['accuracy'].get('min', 'Unknown'),
|
973 |
-
'max': test_scores['accuracy'].get('max', 'Unknown'),
|
974 |
-
'scores': test_scores['accuracy'].get('scores', [])
|
975 |
-
}
|
976 |
-
|
977 |
-
# Add model comparison results if available
|
978 |
-
statistical_validation = metadata.get('statistical_validation', {})
|
979 |
-
if statistical_validation:
|
980 |
-
cv_details['statistical_validation'] = statistical_validation
|
981 |
-
|
982 |
-
promotion_validation = metadata.get('promotion_validation', {})
|
983 |
-
if promotion_validation:
|
984 |
-
cv_details['promotion_validation'] = promotion_validation
|
985 |
-
|
986 |
-
# Add model version and training info
|
987 |
-
cv_details['model_info'] = {
|
988 |
-
'model_version': metadata.get('model_version', 'Unknown'),
|
989 |
-
'model_type': metadata.get('model_type', 'Unknown'),
|
990 |
-
'training_timestamp': metadata.get('timestamp', 'Unknown'),
|
991 |
-
'promotion_timestamp': metadata.get('promotion_timestamp'),
|
992 |
-
'cv_f1_mean': metadata.get('cv_f1_mean'),
|
993 |
-
'cv_f1_std': metadata.get('cv_f1_std'),
|
994 |
-
'cv_accuracy_mean': metadata.get('cv_accuracy_mean'),
|
995 |
-
'cv_accuracy_std': metadata.get('cv_accuracy_std')
|
996 |
-
}
|
997 |
-
|
998 |
-
except Exception as e:
|
999 |
-
cv_details = {
|
1000 |
-
'cross_validation_available': False,
|
1001 |
-
'error': f"Failed to load CV details: {str(e)}"
|
1002 |
-
}
|
1003 |
-
else:
|
1004 |
-
cv_details = {
|
1005 |
-
'cross_validation_available': False,
|
1006 |
-
'error': "No metadata file found"
|
1007 |
-
}
|
1008 |
-
|
1009 |
-
# Combine basic health with detailed CV information
|
1010 |
-
detailed_response = {
|
1011 |
-
'basic_health': basic_health,
|
1012 |
-
'cross_validation_details': cv_details,
|
1013 |
-
'detailed_check_timestamp': datetime.now().isoformat()
|
1014 |
-
}
|
1015 |
-
|
1016 |
-
return detailed_response
|
1017 |
-
|
1018 |
-
except Exception as e:
|
1019 |
-
logger.error(f"Detailed health check failed: {e}")
|
1020 |
-
return {
|
1021 |
-
'basic_health': {'status': 'unhealthy', 'error': str(e)},
|
1022 |
-
'cross_validation_details': {
|
1023 |
-
'cross_validation_available': False,
|
1024 |
-
'error': f"Detailed health check failed: {str(e)}"
|
1025 |
},
|
1026 |
-
|
|
|
1027 |
}
|
1028 |
|
1029 |
-
|
1030 |
-
|
1031 |
-
|
1032 |
-
|
1033 |
-
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
-
metadata_path = path_manager.get_metadata_path()
|
1038 |
-
|
1039 |
-
if not metadata_path.exists():
|
1040 |
-
raise HTTPException(
|
1041 |
-
status_code=404,
|
1042 |
-
detail="Model metadata not found. Train a model first."
|
1043 |
-
)
|
1044 |
-
|
1045 |
-
with open(metadata_path, 'r') as f:
|
1046 |
-
metadata = json.load(f)
|
1047 |
-
|
1048 |
-
cv_info = metadata.get('cross_validation', {})
|
1049 |
-
|
1050 |
-
if not cv_info:
|
1051 |
-
raise HTTPException(
|
1052 |
-
status_code=404,
|
1053 |
-
detail="No cross-validation results found. Model may not have been trained with CV."
|
1054 |
-
)
|
1055 |
-
|
1056 |
-
# Structure the CV results for API response
|
1057 |
-
cv_response = {
|
1058 |
-
'model_version': metadata.get('model_version', 'Unknown'),
|
1059 |
-
'model_type': metadata.get('model_type', 'Unknown'),
|
1060 |
-
'training_timestamp': metadata.get('timestamp', 'Unknown'),
|
1061 |
-
'cross_validation': {
|
1062 |
-
'methodology': {
|
1063 |
-
'n_splits': cv_info.get('n_splits', 'Unknown'),
|
1064 |
-
'cv_type': 'StratifiedKFold',
|
1065 |
-
'random_state': 42
|
1066 |
-
},
|
1067 |
-
'test_scores': cv_info.get('test_scores', {}),
|
1068 |
-
'train_scores': cv_info.get('train_scores', {}),
|
1069 |
-
'performance_indicators': {
|
1070 |
-
'overfitting_score': cv_info.get('overfitting_score', 'Unknown'),
|
1071 |
-
'stability_score': cv_info.get('stability_score', 'Unknown')
|
1072 |
-
},
|
1073 |
-
'individual_fold_results': cv_info.get('individual_fold_results', [])
|
1074 |
-
},
|
1075 |
-
'statistical_validation': metadata.get('statistical_validation', {}),
|
1076 |
-
'promotion_validation': metadata.get('promotion_validation', {}),
|
1077 |
-
'summary_statistics': {
|
1078 |
-
'cv_f1_mean': metadata.get('cv_f1_mean'),
|
1079 |
-
'cv_f1_std': metadata.get('cv_f1_std'),
|
1080 |
-
'cv_accuracy_mean': metadata.get('cv_accuracy_mean'),
|
1081 |
-
'cv_accuracy_std': metadata.get('cv_accuracy_std')
|
1082 |
}
|
1083 |
-
|
1084 |
-
|
1085 |
-
|
1086 |
-
|
1087 |
-
except HTTPException:
|
1088 |
-
raise
|
1089 |
-
except Exception as e:
|
1090 |
-
logger.error(f"CV results retrieval failed: {e}")
|
1091 |
-
raise HTTPException(
|
1092 |
-
status_code=500,
|
1093 |
-
detail=f"Failed to retrieve CV results: {str(e)}"
|
1094 |
-
)
|
1095 |
|
|
|
1096 |
|
1097 |
-
@app.get("/cv/comparison")
|
1098 |
-
async def get_model_comparison_results():
|
1099 |
-
"""
|
1100 |
-
Get latest model comparison results from retraining
|
1101 |
-
- **returns**: Statistical comparison results between models
|
1102 |
-
"""
|
1103 |
-
try:
|
1104 |
-
# Load comparison logs
|
1105 |
-
comparison_log_path = path_manager.get_logs_path("model_comparison.json")
|
1106 |
-
|
1107 |
-
if not comparison_log_path.exists():
|
1108 |
-
raise HTTPException(
|
1109 |
-
status_code=404,
|
1110 |
-
detail="No model comparison results found."
|
1111 |
-
)
|
1112 |
-
|
1113 |
-
with open(comparison_log_path, 'r') as f:
|
1114 |
-
comparison_logs = json.load(f)
|
1115 |
-
|
1116 |
-
if not comparison_logs:
|
1117 |
-
raise HTTPException(
|
1118 |
-
status_code=404,
|
1119 |
-
detail="No comparison entries found."
|
1120 |
-
)
|
1121 |
-
|
1122 |
-
# Get the most recent comparison
|
1123 |
-
latest_comparison = comparison_logs[-1]
|
1124 |
-
comparison_details = latest_comparison.get('comparison_details', {})
|
1125 |
-
|
1126 |
-
# Structure the response
|
1127 |
-
comparison_response = {
|
1128 |
-
'comparison_timestamp': latest_comparison.get('timestamp', 'Unknown'),
|
1129 |
-
'session_id': latest_comparison.get('session_id', 'Unknown'),
|
1130 |
-
'models_compared': {
|
1131 |
-
'model1_name': comparison_details.get('model1_name', 'Production'),
|
1132 |
-
'model2_name': comparison_details.get('model2_name', 'Candidate')
|
1133 |
-
},
|
1134 |
-
'cv_methodology': {
|
1135 |
-
'cv_folds': comparison_details.get('cv_folds', 'Unknown')
|
1136 |
-
},
|
1137 |
-
'model_performance': {
|
1138 |
-
'production_model': comparison_details.get('model1_cv_results', {}),
|
1139 |
-
'candidate_model': comparison_details.get('model2_cv_results', {})
|
1140 |
-
},
|
1141 |
-
'metric_comparisons': comparison_details.get('metric_comparisons', {}),
|
1142 |
-
'statistical_tests': comparison_details.get('statistical_tests', {}),
|
1143 |
-
'promotion_decision': comparison_details.get('promotion_decision', {}),
|
1144 |
-
'summary': {
|
1145 |
-
'decision': comparison_details.get('promotion_decision', {}).get('promote_candidate', False),
|
1146 |
-
'reason': comparison_details.get('promotion_decision', {}).get('reason', 'Unknown'),
|
1147 |
-
'confidence': comparison_details.get('promotion_decision', {}).get('confidence', 0)
|
1148 |
-
}
|
1149 |
-
}
|
1150 |
-
|
1151 |
-
return comparison_response
|
1152 |
-
|
1153 |
-
except HTTPException:
|
1154 |
-
raise
|
1155 |
except Exception as e:
|
1156 |
-
logger.error(f"Model
|
1157 |
raise HTTPException(
|
1158 |
status_code=500,
|
1159 |
-
detail=f"Failed to retrieve model
|
1160 |
)
|
1161 |
-
|
1162 |
|
1163 |
-
|
1164 |
-
|
|
|
1165 |
"""
|
1166 |
-
Get
|
1167 |
-
- **returns**:
|
1168 |
"""
|
1169 |
try:
|
1170 |
-
|
1171 |
-
|
1172 |
-
|
1173 |
-
|
1174 |
-
|
1175 |
-
|
1176 |
-
|
1177 |
-
|
1178 |
-
|
1179 |
-
|
1180 |
-
|
1181 |
-
|
1182 |
-
metadata = json.load(f)
|
1183 |
-
|
1184 |
-
# Extract CV summary
|
1185 |
-
cv_info = metadata.get('cross_validation', {})
|
1186 |
-
if cv_info:
|
1187 |
-
test_scores = cv_info.get('test_scores', {})
|
1188 |
-
cv_summary = {
|
1189 |
-
'cv_available': True,
|
1190 |
-
'cv_folds': cv_info.get('n_splits', 'Unknown'),
|
1191 |
-
'cv_f1_mean': test_scores.get('f1', {}).get('mean'),
|
1192 |
-
'cv_f1_std': test_scores.get('f1', {}).get('std'),
|
1193 |
-
'cv_accuracy_mean': test_scores.get('accuracy', {}).get('mean'),
|
1194 |
-
'cv_accuracy_std': test_scores.get('accuracy', {}).get('std'),
|
1195 |
-
'overfitting_score': cv_info.get('overfitting_score'),
|
1196 |
-
'stability_score': cv_info.get('stability_score')
|
1197 |
-
}
|
1198 |
-
else:
|
1199 |
-
cv_summary = {'cv_available': False}
|
1200 |
-
|
1201 |
-
except Exception as e:
|
1202 |
-
cv_summary = {'cv_available': False, 'cv_error': str(e)}
|
1203 |
-
else:
|
1204 |
-
cv_summary = {'cv_available': False, 'cv_error': 'No metadata file'}
|
1205 |
-
|
1206 |
-
metrics = {
|
1207 |
-
'api_metrics': {
|
1208 |
-
'total_requests': total_requests,
|
1209 |
-
'unique_clients': unique_clients,
|
1210 |
-
'timestamp': datetime.now().isoformat()
|
1211 |
-
},
|
1212 |
-
'model_info': {
|
1213 |
-
'model_version': model_manager.model_metadata.get('model_version', 'unknown'),
|
1214 |
-
'model_health': model_manager.health_status,
|
1215 |
-
'last_health_check': model_manager.last_health_check.isoformat() if model_manager.last_health_check else None
|
1216 |
},
|
1217 |
-
|
1218 |
-
|
1219 |
-
|
1220 |
-
'
|
1221 |
-
'available_models': path_manager.list_available_models()
|
1222 |
}
|
1223 |
}
|
1224 |
|
1225 |
-
|
1226 |
-
|
1227 |
-
|
1228 |
-
|
1229 |
-
|
1230 |
-
|
1231 |
-
|
1232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1233 |
|
1234 |
-
|
1235 |
-
async def get_validation_statistics():
|
1236 |
-
"""Get comprehensive validation statistics"""
|
1237 |
-
try:
|
1238 |
-
stats = get_validation_stats()
|
1239 |
-
|
1240 |
-
if not stats:
|
1241 |
-
return {
|
1242 |
-
'statistics_available': False,
|
1243 |
-
'message': 'No validation statistics available yet',
|
1244 |
-
'timestamp': datetime.now().isoformat()
|
1245 |
-
}
|
1246 |
-
|
1247 |
-
enhanced_stats = {
|
1248 |
-
'statistics_available': True,
|
1249 |
-
'last_updated': stats.get('last_updated'),
|
1250 |
-
'overall_metrics': {
|
1251 |
-
'total_validations': stats.get('total_validations', 0),
|
1252 |
-
'total_articles_processed': stats.get('total_articles', 0),
|
1253 |
-
'overall_success_rate': (stats.get('total_valid_articles', 0) /
|
1254 |
-
max(stats.get('total_articles', 1), 1)),
|
1255 |
-
'average_quality_score': stats.get('average_quality_score', 0.0)
|
1256 |
-
},
|
1257 |
-
'source_breakdown': stats.get('source_statistics', {}),
|
1258 |
-
'recent_performance': {
|
1259 |
-
'validation_history': stats.get('validation_history', [])[-10:],
|
1260 |
-
'quality_trends': stats.get('quality_trends', [])[-10:]
|
1261 |
-
},
|
1262 |
-
'timestamp': datetime.now().isoformat()
|
1263 |
-
}
|
1264 |
-
|
1265 |
-
return enhanced_stats
|
1266 |
-
|
1267 |
-
except Exception as e:
|
1268 |
-
logger.error(f"Failed to get validation statistics: {e}")
|
1269 |
-
raise HTTPException(
|
1270 |
-
status_code=500,
|
1271 |
-
detail=f"Failed to retrieve validation statistics: {str(e)}"
|
1272 |
-
)
|
1273 |
|
1274 |
-
@app.get("/validation/quality-report")
|
1275 |
-
async def get_quality_report():
|
1276 |
-
"""Get comprehensive data quality report"""
|
1277 |
-
try:
|
1278 |
-
report = generate_quality_report()
|
1279 |
-
|
1280 |
-
if 'error' in report:
|
1281 |
-
raise HTTPException(
|
1282 |
-
status_code=404,
|
1283 |
-
detail=report['error']
|
1284 |
-
)
|
1285 |
-
|
1286 |
-
return report
|
1287 |
-
|
1288 |
-
except HTTPException:
|
1289 |
-
raise
|
1290 |
except Exception as e:
|
1291 |
-
logger.error(f"
|
1292 |
raise HTTPException(
|
1293 |
status_code=500,
|
1294 |
-
detail=f"Failed to
|
1295 |
-
)
|
1296 |
-
|
1297 |
-
@app.get("/validation/health")
|
1298 |
-
async def get_validation_health():
|
1299 |
-
"""Get validation system health status"""
|
1300 |
-
try:
|
1301 |
-
stats = get_validation_stats()
|
1302 |
-
|
1303 |
-
health_indicators = {
|
1304 |
-
'validation_system_active': True,
|
1305 |
-
'statistics_available': bool(stats),
|
1306 |
-
'recent_activity': False,
|
1307 |
-
'quality_status': 'unknown'
|
1308 |
-
}
|
1309 |
-
|
1310 |
-
if stats:
|
1311 |
-
last_updated = stats.get('last_updated')
|
1312 |
-
if last_updated:
|
1313 |
-
try:
|
1314 |
-
last_update_time = datetime.fromisoformat(last_updated)
|
1315 |
-
hours_since_update = (datetime.now() - last_update_time).total_seconds() / 3600
|
1316 |
-
health_indicators['recent_activity'] = hours_since_update <= 24
|
1317 |
-
health_indicators['hours_since_last_validation'] = hours_since_update
|
1318 |
-
except:
|
1319 |
-
pass
|
1320 |
-
|
1321 |
-
avg_quality = stats.get('average_quality_score', 0)
|
1322 |
-
success_rate = stats.get('total_valid_articles', 0) / max(stats.get('total_articles', 1), 1)
|
1323 |
-
|
1324 |
-
if avg_quality >= 0.7 and success_rate >= 0.8:
|
1325 |
-
health_indicators['quality_status'] = 'excellent'
|
1326 |
-
elif avg_quality >= 0.5 and success_rate >= 0.6:
|
1327 |
-
health_indicators['quality_status'] = 'good'
|
1328 |
-
elif avg_quality >= 0.3 and success_rate >= 0.4:
|
1329 |
-
health_indicators['quality_status'] = 'fair'
|
1330 |
-
else:
|
1331 |
-
health_indicators['quality_status'] = 'poor'
|
1332 |
-
|
1333 |
-
health_indicators['average_quality_score'] = avg_quality
|
1334 |
-
health_indicators['validation_success_rate'] = success_rate
|
1335 |
-
|
1336 |
-
overall_healthy = (
|
1337 |
-
health_indicators['validation_system_active'] and
|
1338 |
-
health_indicators['statistics_available'] and
|
1339 |
-
health_indicators['quality_status'] not in ['poor', 'unknown']
|
1340 |
)
|
1341 |
-
|
1342 |
-
return {
|
1343 |
-
'validation_health': {
|
1344 |
-
'overall_status': 'healthy' if overall_healthy else 'degraded',
|
1345 |
-
'health_indicators': health_indicators,
|
1346 |
-
'last_check': datetime.now().isoformat()
|
1347 |
-
}
|
1348 |
-
}
|
1349 |
-
|
1350 |
-
except Exception as e:
|
1351 |
-
logger.error(f"Validation health check failed: {e}")
|
1352 |
-
return {
|
1353 |
-
'validation_health': {
|
1354 |
-
'overall_status': 'unhealthy',
|
1355 |
-
'error': str(e),
|
1356 |
-
'last_check': datetime.now().isoformat()
|
1357 |
-
}
|
1358 |
-
}
|
1359 |
-
|
1360 |
-
|
1361 |
-
# New monitoring endpoints
|
1362 |
-
@app.get("/monitor/metrics/current")
|
1363 |
-
async def get_current_metrics():
|
1364 |
-
"""Get current real-time metrics"""
|
1365 |
-
try:
|
1366 |
-
prediction_metrics = prediction_monitor.get_current_metrics()
|
1367 |
-
system_metrics = metrics_collector.collect_system_metrics()
|
1368 |
-
api_metrics = metrics_collector.collect_api_metrics()
|
1369 |
-
|
1370 |
-
return {
|
1371 |
-
"timestamp": datetime.now().isoformat(),
|
1372 |
-
"prediction_metrics": asdict(prediction_metrics),
|
1373 |
-
"system_metrics": asdict(system_metrics),
|
1374 |
-
"api_metrics": asdict(api_metrics)
|
1375 |
-
}
|
1376 |
-
except Exception as e:
|
1377 |
-
logger.error(f"Failed to get current metrics: {e}")
|
1378 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1379 |
-
|
1380 |
-
@app.get("/monitor/metrics/historical")
|
1381 |
-
async def get_historical_metrics(hours: int = 24):
|
1382 |
-
"""Get historical metrics"""
|
1383 |
-
try:
|
1384 |
-
return {
|
1385 |
-
"prediction_metrics": [asdict(m) for m in prediction_monitor.get_historical_metrics(hours)],
|
1386 |
-
"aggregated_metrics": metrics_collector.get_aggregated_metrics(hours)
|
1387 |
-
}
|
1388 |
-
except Exception as e:
|
1389 |
-
logger.error(f"Failed to get historical metrics: {e}")
|
1390 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1391 |
|
1392 |
-
@app.get("/monitor/alerts")
|
1393 |
-
async def get_alerts():
|
1394 |
-
"""Get active alerts and statistics"""
|
1395 |
-
try:
|
1396 |
-
return {
|
1397 |
-
"active_alerts": [asdict(alert) for alert in alert_system.get_active_alerts()],
|
1398 |
-
"alert_statistics": alert_system.get_alert_statistics()
|
1399 |
-
}
|
1400 |
-
except Exception as e:
|
1401 |
-
logger.error(f"Failed to get alerts: {e}")
|
1402 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1403 |
|
1404 |
-
|
1405 |
-
async def get_monitoring_health():
|
1406 |
-
"""Get monitoring system health"""
|
1407 |
-
try:
|
1408 |
-
dashboard_data = metrics_collector.get_real_time_dashboard_data()
|
1409 |
-
confidence_analysis = prediction_monitor.get_confidence_analysis()
|
1410 |
-
|
1411 |
-
return {
|
1412 |
-
"monitoring_status": "active",
|
1413 |
-
"dashboard_data": dashboard_data,
|
1414 |
-
"confidence_analysis": confidence_analysis,
|
1415 |
-
"total_predictions": prediction_monitor.total_predictions
|
1416 |
-
}
|
1417 |
-
except Exception as e:
|
1418 |
-
logger.error(f"Failed to get monitoring health: {e}")
|
1419 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1420 |
|
1421 |
-
@app.get("/
|
1422 |
-
async def
|
1423 |
-
"""
|
1424 |
-
|
1425 |
-
|
1426 |
-
|
1427 |
-
logger.error(f"Failed to get prediction patterns: {e}")
|
1428 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1429 |
-
|
1430 |
-
@app.post("/monitor/alerts/{alert_id}/acknowledge")
|
1431 |
-
async def acknowledge_alert(alert_id: str):
|
1432 |
-
"""Acknowledge an alert"""
|
1433 |
-
try:
|
1434 |
-
success = alert_system.acknowledge_alert(alert_id, "api_user")
|
1435 |
-
if success:
|
1436 |
-
return {"message": f"Alert {alert_id} acknowledged"}
|
1437 |
-
else:
|
1438 |
-
raise HTTPException(status_code=404, detail="Alert not found")
|
1439 |
-
except HTTPException:
|
1440 |
-
raise
|
1441 |
-
except Exception as e:
|
1442 |
-
logger.error(f"Failed to acknowledge alert: {e}")
|
1443 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1444 |
-
|
1445 |
-
@app.post("/monitor/alerts/{alert_id}/resolve")
|
1446 |
-
async def resolve_alert(alert_id: str, resolution_note: str = ""):
|
1447 |
-
"""Resolve an alert"""
|
1448 |
-
try:
|
1449 |
-
success = alert_system.resolve_alert(alert_id, "api_user", resolution_note)
|
1450 |
-
if success:
|
1451 |
-
return {"message": f"Alert {alert_id} resolved"}
|
1452 |
-
else:
|
1453 |
-
raise HTTPException(status_code=404, detail="Alert not found")
|
1454 |
-
except HTTPException:
|
1455 |
-
raise
|
1456 |
-
except Exception as e:
|
1457 |
-
logger.error(f"Failed to resolve alert: {e}")
|
1458 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1459 |
-
|
1460 |
-
|
1461 |
-
@app.get("/automation/status")
|
1462 |
-
async def get_automation_status():
|
1463 |
-
"""Get automation system status"""
|
1464 |
-
try:
|
1465 |
-
if automation_manager is None:
|
1466 |
-
raise HTTPException(status_code=503, detail="Automation system not available")
|
1467 |
-
|
1468 |
-
# Get automation status
|
1469 |
-
automation_status = automation_manager.get_automation_status()
|
1470 |
-
|
1471 |
-
# Get drift monitoring status
|
1472 |
-
drift_status = automation_manager.drift_monitor.get_automation_status()
|
1473 |
-
|
1474 |
-
return {
|
1475 |
-
"timestamp": datetime.now().isoformat(),
|
1476 |
-
"automation_system": automation_status,
|
1477 |
-
"drift_monitoring": drift_status,
|
1478 |
-
"system_health": "active" if automation_manager.retraining_active else "inactive"
|
1479 |
-
}
|
1480 |
-
|
1481 |
-
except Exception as e:
|
1482 |
-
logger.error(f"Failed to get automation status: {e}")
|
1483 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1484 |
-
|
1485 |
-
@app.get("/automation/triggers/check")
|
1486 |
-
async def check_retraining_triggers():
|
1487 |
-
"""Check current retraining triggers"""
|
1488 |
-
try:
|
1489 |
-
if automation_manager is None:
|
1490 |
-
raise HTTPException(status_code=503, detail="Automation system not available")
|
1491 |
-
|
1492 |
-
trigger_results = automation_manager.drift_monitor.check_retraining_triggers()
|
1493 |
-
|
1494 |
-
return {
|
1495 |
-
"timestamp": datetime.now().isoformat(),
|
1496 |
-
"trigger_evaluation": trigger_results,
|
1497 |
-
"recommendation": "Retraining recommended" if trigger_results.get('should_retrain') else "No retraining needed"
|
1498 |
-
}
|
1499 |
-
|
1500 |
-
except Exception as e:
|
1501 |
-
logger.error(f"Failed to check triggers: {e}")
|
1502 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1503 |
-
|
1504 |
-
@app.post("/automation/retrain/trigger")
|
1505 |
-
async def trigger_manual_retraining(reason: str = "manual_api_trigger"):
|
1506 |
-
"""Manually trigger retraining"""
|
1507 |
try:
|
1508 |
-
if
|
1509 |
-
raise HTTPException(status_code=503, detail="Automation system not available")
|
1510 |
-
|
1511 |
-
result = automation_manager.trigger_manual_retraining(reason)
|
1512 |
-
|
1513 |
-
if result['success']:
|
1514 |
return {
|
1515 |
-
"
|
1516 |
-
"
|
1517 |
-
"
|
|
|
1518 |
}
|
1519 |
-
else:
|
1520 |
-
raise HTTPException(status_code=500, detail=result.get('error', 'Unknown error'))
|
1521 |
-
|
1522 |
-
except HTTPException:
|
1523 |
-
raise
|
1524 |
-
except Exception as e:
|
1525 |
-
logger.error(f"Failed to trigger retraining: {e}")
|
1526 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1527 |
-
|
1528 |
-
@app.get("/automation/queue")
|
1529 |
-
async def get_retraining_queue():
|
1530 |
-
"""Get current retraining queue"""
|
1531 |
-
try:
|
1532 |
-
if automation_manager is None:
|
1533 |
-
raise HTTPException(status_code=503, detail="Automation system not available")
|
1534 |
-
|
1535 |
-
queue = automation_manager.load_retraining_queue()
|
1536 |
-
recent_logs = automation_manager.get_recent_automation_logs(hours=24)
|
1537 |
-
|
1538 |
-
return {
|
1539 |
-
"timestamp": datetime.now().isoformat(),
|
1540 |
-
"queued_jobs": queue,
|
1541 |
-
"recent_activity": recent_logs,
|
1542 |
-
"queue_length": len(queue)
|
1543 |
-
}
|
1544 |
-
|
1545 |
-
except Exception as e:
|
1546 |
-
logger.error(f"Failed to get retraining queue: {e}")
|
1547 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1548 |
|
1549 |
-
|
1550 |
-
|
1551 |
-
|
1552 |
-
|
1553 |
-
|
1554 |
-
|
1555 |
-
|
1556 |
-
|
1557 |
-
|
1558 |
-
|
1559 |
-
|
1560 |
-
# Get current drift status
|
1561 |
-
drift_status = automation_manager.drift_monitor.get_automation_status()
|
1562 |
-
|
1563 |
-
return {
|
1564 |
-
"timestamp": datetime.now().isoformat(),
|
1565 |
-
"drift_monitoring_active": True,
|
1566 |
-
"recent_drift_checks": drift_checks[-10:], # Last 10 checks
|
1567 |
-
"drift_status": drift_status
|
1568 |
}
|
1569 |
-
|
1570 |
-
except Exception as e:
|
1571 |
-
logger.error(f"Failed to get drift status: {e}")
|
1572 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1573 |
|
1574 |
-
|
1575 |
-
|
1576 |
-
|
1577 |
-
|
1578 |
-
if automation_manager is None:
|
1579 |
-
raise HTTPException(status_code=503, detail="Automation system not available")
|
1580 |
-
|
1581 |
-
# Update settings
|
1582 |
-
automation_manager.automation_config.update(settings)
|
1583 |
-
automation_manager.save_automation_config()
|
1584 |
-
|
1585 |
-
return {
|
1586 |
-
"message": "Automation settings updated",
|
1587 |
-
"timestamp": datetime.now().isoformat(),
|
1588 |
-
"updated_settings": settings
|
1589 |
-
}
|
1590 |
-
|
1591 |
-
except Exception as e:
|
1592 |
-
logger.error(f"Failed to update automation settings: {e}")
|
1593 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1594 |
-
|
1595 |
-
|
1596 |
-
# Deployment endpoints
|
1597 |
-
@app.get("/deployment/status")
|
1598 |
-
async def get_deployment_status():
|
1599 |
-
"""Get deployment system status"""
|
1600 |
-
try:
|
1601 |
-
if not deployment_manager:
|
1602 |
-
raise HTTPException(status_code=503, detail="Deployment system not available")
|
1603 |
-
|
1604 |
-
return deployment_manager.get_deployment_status()
|
1605 |
-
|
1606 |
-
except Exception as e:
|
1607 |
-
logger.error(f"Failed to get deployment status: {e}")
|
1608 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1609 |
-
|
1610 |
-
@app.post("/deployment/prepare")
|
1611 |
-
async def prepare_deployment(target_version: str, strategy: str = "blue_green"):
|
1612 |
-
"""Prepare a new deployment"""
|
1613 |
-
try:
|
1614 |
-
if not deployment_manager:
|
1615 |
-
raise HTTPException(status_code=503, detail="Deployment system not available")
|
1616 |
-
|
1617 |
-
deployment_id = deployment_manager.prepare_deployment(target_version, strategy)
|
1618 |
-
|
1619 |
-
return {
|
1620 |
-
"message": "Deployment prepared",
|
1621 |
-
"deployment_id": deployment_id,
|
1622 |
-
"target_version": target_version,
|
1623 |
-
"strategy": strategy
|
1624 |
-
}
|
1625 |
-
|
1626 |
-
except Exception as e:
|
1627 |
-
logger.error(f"Failed to prepare deployment: {e}")
|
1628 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1629 |
-
|
1630 |
-
@app.post("/deployment/start/{deployment_id}")
|
1631 |
-
async def start_deployment(deployment_id: str):
|
1632 |
-
"""Start a prepared deployment"""
|
1633 |
-
try:
|
1634 |
-
if not deployment_manager:
|
1635 |
-
raise HTTPException(status_code=503, detail="Deployment system not available")
|
1636 |
-
|
1637 |
-
success = deployment_manager.start_deployment(deployment_id)
|
1638 |
-
|
1639 |
-
if success:
|
1640 |
-
return {"message": "Deployment started successfully", "deployment_id": deployment_id}
|
1641 |
-
else:
|
1642 |
-
raise HTTPException(status_code=500, detail="Deployment failed to start")
|
1643 |
-
|
1644 |
-
except Exception as e:
|
1645 |
-
logger.error(f"Failed to start deployment: {e}")
|
1646 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1647 |
-
|
1648 |
-
@app.post("/deployment/rollback")
|
1649 |
-
async def rollback_deployment(reason: str = "Manual rollback"):
|
1650 |
-
"""Rollback current deployment"""
|
1651 |
-
try:
|
1652 |
-
if not deployment_manager:
|
1653 |
-
raise HTTPException(status_code=503, detail="Deployment system not available")
|
1654 |
-
|
1655 |
-
success = deployment_manager.initiate_rollback(reason)
|
1656 |
-
|
1657 |
-
if success:
|
1658 |
-
return {"message": "Rollback initiated successfully", "reason": reason}
|
1659 |
-
else:
|
1660 |
-
raise HTTPException(status_code=500, detail="Rollback failed")
|
1661 |
|
1662 |
-
|
1663 |
-
|
1664 |
-
|
1665 |
-
|
1666 |
-
|
1667 |
-
async def get_traffic_status():
|
1668 |
-
"""Get traffic routing status"""
|
1669 |
-
try:
|
1670 |
-
if not traffic_router:
|
1671 |
-
raise HTTPException(status_code=503, detail="Traffic router not available")
|
1672 |
-
|
1673 |
-
return traffic_router.get_routing_status()
|
1674 |
-
|
1675 |
-
except Exception as e:
|
1676 |
-
logger.error(f"Failed to get traffic status: {e}")
|
1677 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1678 |
-
|
1679 |
-
@app.post("/deployment/traffic/weights")
|
1680 |
-
async def set_traffic_weights(blue_weight: int, green_weight: int):
|
1681 |
-
"""Set traffic routing weights"""
|
1682 |
-
try:
|
1683 |
-
if not traffic_router:
|
1684 |
-
raise HTTPException(status_code=503, detail="Traffic router not available")
|
1685 |
-
|
1686 |
-
success = traffic_router.set_routing_weights(blue_weight, green_weight)
|
1687 |
-
|
1688 |
-
if success:
|
1689 |
-
return {
|
1690 |
-
"message": "Traffic weights updated",
|
1691 |
-
"blue_weight": blue_weight,
|
1692 |
-
"green_weight": green_weight
|
1693 |
}
|
1694 |
-
else:
|
1695 |
-
raise HTTPException(status_code=500, detail="Failed to update traffic weights")
|
1696 |
-
|
1697 |
-
except Exception as e:
|
1698 |
-
logger.error(f"Failed to set traffic weights: {e}")
|
1699 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1700 |
|
1701 |
-
|
1702 |
-
async def get_deployment_performance(window_minutes: int = 60):
|
1703 |
-
"""Get deployment performance comparison"""
|
1704 |
-
try:
|
1705 |
-
if not traffic_router:
|
1706 |
-
raise HTTPException(status_code=503, detail="Traffic router not available")
|
1707 |
-
|
1708 |
-
return traffic_router.compare_environment_performance(window_minutes)
|
1709 |
-
|
1710 |
-
except Exception as e:
|
1711 |
-
logger.error(f"Failed to get deployment performance: {e}")
|
1712 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1713 |
|
1714 |
-
@app.get("/registry/models")
|
1715 |
-
async def list_registry_models(status: str = None, limit: int = 10):
|
1716 |
-
"""List models in registry"""
|
1717 |
-
try:
|
1718 |
-
if not model_registry:
|
1719 |
-
raise HTTPException(status_code=503, detail="Model registry not available")
|
1720 |
-
|
1721 |
-
models = model_registry.list_models(status=status, limit=limit)
|
1722 |
-
return {"models": [asdict(model) for model in models]}
|
1723 |
-
|
1724 |
except Exception as e:
|
1725 |
-
logger.error(f"
|
1726 |
-
raise HTTPException(
|
1727 |
-
|
1728 |
-
|
1729 |
-
|
1730 |
-
"""Get model registry statistics"""
|
1731 |
-
try:
|
1732 |
-
if not model_registry:
|
1733 |
-
raise HTTPException(status_code=503, detail="Model registry not available")
|
1734 |
-
|
1735 |
-
return model_registry.get_registry_stats()
|
1736 |
-
|
1737 |
-
except Exception as e:
|
1738 |
-
logger.error(f"Failed to get registry stats: {e}")
|
1739 |
-
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
+
# Enhanced app/fastapi_server.py with LightGBM ensemble support
|
2 |
+
|
3 |
import json
|
4 |
import time
|
5 |
import joblib
|
|
|
26 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
27 |
from fastapi import FastAPI, HTTPException, Depends, Request, BackgroundTasks, status
|
28 |
|
29 |
+
# LightGBM availability check
|
30 |
+
try:
|
31 |
+
import lightgbm as lgb
|
32 |
+
LIGHTGBM_AVAILABLE = True
|
33 |
+
except ImportError:
|
34 |
+
LIGHTGBM_AVAILABLE = False
|
35 |
+
|
36 |
from data.data_validator import (
|
37 |
DataValidationPipeline, validate_text, validate_articles_list,
|
38 |
get_validation_stats, generate_quality_report
|
|
|
48 |
from deployment.model_registry import ModelRegistry
|
49 |
from deployment.blue_green_manager import BlueGreenDeploymentManager
|
50 |
|
51 |
+
# Import the path manager
|
|
|
52 |
try:
|
53 |
from path_config import path_manager
|
54 |
except ImportError:
|
|
|
55 |
import sys
|
56 |
import os
|
57 |
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
|
|
60 |
# Configure logging with fallback for permission issues
|
61 |
def setup_logging():
|
62 |
"""Setup logging with fallback for environments with restricted file access"""
|
63 |
+
handlers = [logging.StreamHandler()]
|
64 |
|
65 |
try:
|
|
|
66 |
log_file_path = path_manager.get_logs_path('fastapi_server.log')
|
67 |
log_file_path.parent.mkdir(parents=True, exist_ok=True)
|
68 |
|
|
|
69 |
test_handler = logging.FileHandler(log_file_path)
|
70 |
test_handler.close()
|
71 |
|
|
|
72 |
handlers.append(logging.FileHandler(log_file_path))
|
73 |
+
print(f"Logging to file: {log_file_path}")
|
74 |
|
75 |
except (PermissionError, OSError) as e:
|
|
|
76 |
print(f"Cannot create log file, using console only: {e}")
|
77 |
|
|
|
78 |
try:
|
79 |
import tempfile
|
80 |
temp_log = tempfile.NamedTemporaryFile(mode='w', suffix='.log', delete=False, prefix='fastapi_')
|
|
|
86 |
|
87 |
return handlers
|
88 |
|
89 |
+
# Setup logging
|
90 |
logging.basicConfig(
|
91 |
level=logging.INFO,
|
92 |
format='%(asctime)s - %(levelname)s - %(message)s',
|
|
|
94 |
)
|
95 |
logger = logging.getLogger(__name__)
|
96 |
|
97 |
+
# Log environment info
|
98 |
try:
|
99 |
path_manager.log_environment_info()
|
100 |
except Exception as e:
|
|
|
107 |
rate_limit_storage = defaultdict(list)
|
108 |
|
109 |
|
110 |
+
class EnhancedModelManager:
|
111 |
+
"""Enhanced model manager with LightGBM ensemble support"""
|
112 |
|
113 |
def __init__(self):
|
114 |
self.model = None
|
115 |
self.vectorizer = None
|
116 |
self.pipeline = None
|
117 |
+
self.ensemble = None
|
118 |
self.model_metadata = {}
|
119 |
+
self.ensemble_metadata = {}
|
120 |
self.last_health_check = None
|
121 |
self.health_status = "unknown"
|
122 |
+
self.model_type = "unknown"
|
123 |
+
self.is_ensemble = False
|
124 |
self.load_model()
|
125 |
|
126 |
def load_model(self):
|
127 |
+
"""Load model with comprehensive error handling and ensemble support"""
|
128 |
try:
|
129 |
+
logger.info("Loading ML model with ensemble support...")
|
130 |
|
131 |
# Initialize all to None first
|
132 |
self.model = None
|
133 |
self.vectorizer = None
|
134 |
self.pipeline = None
|
135 |
+
self.ensemble = None
|
136 |
+
self.is_ensemble = False
|
137 |
|
138 |
+
# Check for ensemble model first
|
139 |
+
ensemble_path = Path("/tmp/ensemble.pkl")
|
140 |
+
ensemble_metadata_path = Path("/tmp/ensemble_metadata.json")
|
141 |
|
142 |
+
if ensemble_path.exists():
|
143 |
try:
|
144 |
+
self.ensemble = joblib.load(ensemble_path)
|
145 |
+
self.pipeline = self.ensemble # Use ensemble as pipeline
|
146 |
+
self.model_type = "ensemble"
|
147 |
+
self.is_ensemble = True
|
148 |
+
|
149 |
+
# Load ensemble metadata
|
150 |
+
if ensemble_metadata_path.exists():
|
151 |
+
with open(ensemble_metadata_path, 'r') as f:
|
152 |
+
self.ensemble_metadata = json.load(f)
|
153 |
+
logger.info(f"Loaded ensemble metadata: {self.ensemble_metadata.get('ensemble_type', 'unknown')}")
|
154 |
+
|
155 |
+
logger.info("Loaded ensemble model successfully")
|
156 |
+
logger.info(f"Ensemble type: {self.ensemble_metadata.get('ensemble_type', 'voting_classifier')}")
|
157 |
+
logger.info(f"Component models: {self.ensemble_metadata.get('component_models', [])}")
|
158 |
+
|
159 |
except Exception as e:
|
160 |
+
logger.warning(f"Failed to load ensemble model: {e}, falling back to individual pipeline")
|
161 |
+
self.ensemble = None
|
162 |
+
|
163 |
+
# Try to load pipeline if ensemble not available
|
164 |
+
if self.pipeline is None:
|
165 |
+
pipeline_path = path_manager.get_pipeline_path()
|
166 |
+
logger.info(f"Checking for pipeline at: {pipeline_path}")
|
167 |
+
|
168 |
+
if pipeline_path.exists():
|
169 |
+
try:
|
170 |
+
self.pipeline = joblib.load(pipeline_path)
|
171 |
+
# Extract components from pipeline
|
172 |
+
if hasattr(self.pipeline, 'named_steps'):
|
173 |
+
self.model = self.pipeline.named_steps.get('model')
|
174 |
+
self.vectorizer = (self.pipeline.named_steps.get('vectorizer') or
|
175 |
+
self.pipeline.named_steps.get('vectorize'))
|
176 |
+
|
177 |
+
# Check if this is actually an ensemble pipeline
|
178 |
+
if 'ensemble' in self.pipeline.named_steps:
|
179 |
+
self.model_type = "ensemble_pipeline"
|
180 |
+
self.is_ensemble = True
|
181 |
+
logger.info("Detected ensemble within pipeline")
|
182 |
+
|
183 |
+
logger.info("Loaded model pipeline successfully")
|
184 |
+
logger.info(f"Pipeline steps: {list(self.pipeline.named_steps.keys()) if hasattr(self.pipeline, 'named_steps') else 'No named_steps'}")
|
185 |
+
except Exception as e:
|
186 |
+
logger.warning(f"Failed to load pipeline: {e}, falling back to individual components")
|
187 |
+
self.pipeline = None
|
188 |
|
189 |
+
# If pipeline loading failed, load individual components
|
190 |
if self.pipeline is None:
|
191 |
model_path = path_manager.get_model_file_path()
|
192 |
vectorizer_path = path_manager.get_vectorizer_path()
|
|
|
198 |
try:
|
199 |
self.model = joblib.load(model_path)
|
200 |
self.vectorizer = joblib.load(vectorizer_path)
|
201 |
+
self.model_type = "individual_components"
|
202 |
logger.info("Loaded model components successfully")
|
203 |
except Exception as e:
|
204 |
logger.error(f"Failed to load individual components: {e}")
|
205 |
raise e
|
206 |
else:
|
207 |
+
raise FileNotFoundError(f"No model files found")
|
|
|
|
|
|
|
|
|
208 |
|
209 |
# Load metadata
|
210 |
metadata_path = path_manager.get_metadata_path()
|
211 |
if metadata_path.exists():
|
212 |
with open(metadata_path, 'r') as f:
|
213 |
self.model_metadata = json.load(f)
|
214 |
+
|
215 |
+
# Update model type and ensemble status from metadata
|
216 |
+
if self.model_metadata.get('is_ensemble', False):
|
217 |
+
self.is_ensemble = True
|
218 |
+
if not self.model_type.startswith('ensemble'):
|
219 |
+
self.model_type = "ensemble_from_metadata"
|
220 |
+
|
221 |
logger.info(f"Loaded model metadata: {self.model_metadata.get('model_version', 'Unknown')}")
|
222 |
+
logger.info(f"Model type from metadata: {self.model_metadata.get('model_type', 'unknown')}")
|
223 |
+
logger.info(f"Is ensemble: {self.is_ensemble}")
|
224 |
+
|
225 |
+
if self.is_ensemble and 'ensemble_details' in self.model_metadata:
|
226 |
+
ensemble_details = self.model_metadata['ensemble_details']
|
227 |
+
logger.info(f"Ensemble details: {ensemble_details}")
|
228 |
else:
|
229 |
logger.warning(f"Metadata file not found at: {metadata_path}")
|
230 |
self.model_metadata = {"model_version": "unknown"}
|
231 |
|
232 |
+
# Verify we have what we need for predictions
|
233 |
+
if self.pipeline is None and (self.model is None or self.vectorizer is None):
|
234 |
+
raise ValueError("Neither complete pipeline nor individual model components are available")
|
235 |
+
|
236 |
self.health_status = "healthy"
|
237 |
self.last_health_check = datetime.now()
|
238 |
|
239 |
# Log what was successfully loaded
|
240 |
logger.info(f"Model loading summary:")
|
241 |
logger.info(f" Pipeline available: {self.pipeline is not None}")
|
242 |
+
logger.info(f" Individual model available: {self.model is not None}")
|
243 |
logger.info(f" Vectorizer available: {self.vectorizer is not None}")
|
244 |
+
logger.info(f" Ensemble available: {self.ensemble is not None}")
|
245 |
+
logger.info(f" Model type: {self.model_type}")
|
246 |
+
logger.info(f" Is ensemble: {self.is_ensemble}")
|
247 |
|
248 |
except Exception as e:
|
249 |
logger.error(f"Failed to load model: {e}")
|
|
|
252 |
self.model = None
|
253 |
self.vectorizer = None
|
254 |
self.pipeline = None
|
255 |
+
self.ensemble = None
|
256 |
|
257 |
def predict(self, text: str) -> tuple[str, float]:
|
258 |
+
"""Make prediction with enhanced ensemble support"""
|
259 |
try:
|
260 |
if self.pipeline:
|
261 |
+
# Use pipeline for prediction (works for both ensemble and individual models)
|
262 |
prediction = self.pipeline.predict([text])[0]
|
263 |
probabilities = self.pipeline.predict_proba([text])[0]
|
264 |
+
|
265 |
+
if self.is_ensemble:
|
266 |
+
logger.debug("Used ensemble pipeline for prediction")
|
267 |
+
else:
|
268 |
+
logger.debug("Used individual model pipeline for prediction")
|
269 |
+
|
270 |
elif self.model and self.vectorizer:
|
271 |
# Use individual components
|
272 |
X = self.vectorizer.transform([text])
|
|
|
293 |
)
|
294 |
|
295 |
def health_check(self) -> Dict[str, Any]:
|
296 |
+
"""Perform health check with ensemble information"""
|
297 |
try:
|
298 |
# Test prediction with sample text
|
299 |
test_text = "This is a test article for health check purposes."
|
|
|
302 |
self.health_status = "healthy"
|
303 |
self.last_health_check = datetime.now()
|
304 |
|
305 |
+
health_info = {
|
306 |
"status": "healthy",
|
307 |
"last_check": self.last_health_check.isoformat(),
|
308 |
"model_available": self.model is not None,
|
309 |
"vectorizer_available": self.vectorizer is not None,
|
310 |
"pipeline_available": self.pipeline is not None,
|
311 |
+
"ensemble_available": self.ensemble is not None,
|
312 |
+
"model_type": self.model_type,
|
313 |
+
"is_ensemble": self.is_ensemble,
|
314 |
"test_prediction": {"label": label, "confidence": confidence},
|
315 |
"environment": path_manager.environment,
|
316 |
+
"lightgbm_available": LIGHTGBM_AVAILABLE,
|
317 |
+
"model_paths": {
|
318 |
+
"pipeline": str(path_manager.get_pipeline_path()),
|
319 |
+
"ensemble": "/tmp/ensemble.pkl",
|
320 |
+
"model": str(path_manager.get_model_file_path()),
|
321 |
+
"vectorizer": str(path_manager.get_vectorizer_path())
|
322 |
+
},
|
323 |
"file_exists": {
|
324 |
+
"pipeline": path_manager.get_pipeline_path().exists(),
|
325 |
+
"ensemble": Path("/tmp/ensemble.pkl").exists(),
|
326 |
"model": path_manager.get_model_file_path().exists(),
|
327 |
"vectorizer": path_manager.get_vectorizer_path().exists(),
|
328 |
+
"metadata": path_manager.get_metadata_path().exists(),
|
329 |
+
"ensemble_metadata": Path("/tmp/ensemble_metadata.json").exists()
|
330 |
}
|
331 |
}
|
332 |
|
333 |
+
# Add ensemble-specific information
|
334 |
+
if self.is_ensemble:
|
335 |
+
health_info["ensemble_info"] = {
|
336 |
+
"ensemble_type": self.ensemble_metadata.get('ensemble_type', 'unknown'),
|
337 |
+
"component_models": self.ensemble_metadata.get('component_models', []),
|
338 |
+
"voting_type": self.model_metadata.get('ensemble_details', {}).get('voting_type', 'unknown')
|
339 |
+
}
|
340 |
+
|
341 |
+
return health_info
|
342 |
+
|
343 |
except Exception as e:
|
344 |
self.health_status = "unhealthy"
|
345 |
self.last_health_check = datetime.now()
|
|
|
351 |
"model_available": self.model is not None,
|
352 |
"vectorizer_available": self.vectorizer is not None,
|
353 |
"pipeline_available": self.pipeline is not None,
|
354 |
+
"ensemble_available": self.ensemble is not None,
|
355 |
+
"model_type": self.model_type,
|
356 |
+
"is_ensemble": self.is_ensemble,
|
357 |
"environment": path_manager.environment,
|
358 |
+
"lightgbm_available": LIGHTGBM_AVAILABLE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
}
|
360 |
|
361 |
|
362 |
+
# Background task functions remain the same...
|
363 |
async def log_prediction(text: str, prediction: str, confidence: float, client_ip: str, processing_time: float):
|
364 |
"""Log prediction details with error handling for file access"""
|
365 |
try:
|
|
|
370 |
"prediction": prediction,
|
371 |
"confidence": confidence,
|
372 |
"processing_time": processing_time,
|
373 |
+
"text_hash": hashlib.md5(text.encode()).hexdigest(),
|
374 |
+
"model_type": model_manager.model_type,
|
375 |
+
"is_ensemble": model_manager.is_ensemble
|
376 |
}
|
377 |
|
378 |
# Try to save to log file
|
|
|
401 |
await f.write(json.dumps(logs, indent=2))
|
402 |
|
403 |
except (PermissionError, OSError) as e:
|
|
|
404 |
logger.warning(f"Cannot write prediction log to file: {e}")
|
405 |
logger.info(f"Prediction logged: {json.dumps(log_entry)}")
|
406 |
|
|
|
408 |
logger.error(f"Failed to log prediction: {e}")
|
409 |
|
410 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
# Global variables
|
412 |
+
model_manager = EnhancedModelManager()
|
413 |
|
414 |
# Initialize automation manager
|
415 |
automation_manager = None
|
|
|
419 |
traffic_router = None
|
420 |
model_registry = None
|
421 |
|
|
|
422 |
@asynccontextmanager
|
423 |
async def lifespan(app: FastAPI):
|
424 |
+
"""Manage application lifespan with enhanced model support"""
|
425 |
global deployment_manager, traffic_router, model_registry
|
426 |
|
427 |
+
logger.info("Starting Enhanced FastAPI application with ensemble support...")
|
428 |
|
429 |
# Startup tasks
|
430 |
model_manager.load_model()
|
431 |
|
432 |
+
# Log model information
|
433 |
+
logger.info(f"Model loaded: {model_manager.model_type}")
|
434 |
+
logger.info(f"Ensemble support: {model_manager.is_ensemble}")
|
435 |
+
logger.info(f"LightGBM available: {LIGHTGBM_AVAILABLE}")
|
436 |
+
|
437 |
# Initialize deployment components
|
438 |
try:
|
439 |
deployment_manager = BlueGreenDeploymentManager()
|
|
|
443 |
except Exception as e:
|
444 |
logger.error(f"Failed to initialize deployment system: {e}")
|
445 |
|
446 |
+
# Initialize monitoring
|
447 |
+
try:
|
448 |
+
prediction_monitor = PredictionMonitor(base_dir=Path("/tmp"))
|
449 |
+
metrics_collector = MetricsCollector(base_dir=Path("/tmp"))
|
450 |
+
alert_system = AlertSystem(base_dir=Path("/tmp"))
|
451 |
+
|
452 |
+
prediction_monitor.start_monitoring()
|
453 |
+
alert_system.add_notification_handler("console", console_notification_handler)
|
454 |
+
logger.info("Monitoring system initialized")
|
455 |
+
except Exception as e:
|
456 |
+
logger.error(f"Failed to initialize monitoring: {e}")
|
457 |
|
458 |
yield
|
459 |
|
460 |
# Shutdown tasks
|
461 |
+
logger.info("Shutting down Enhanced FastAPI application...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
|
463 |
# Create FastAPI app
|
464 |
app = FastAPI(
|
465 |
+
title="Enhanced Fake News Detection API with Ensemble Support",
|
466 |
+
description="Production-ready API for fake news detection with LightGBM ensemble support and comprehensive monitoring",
|
467 |
+
version="2.1.0",
|
468 |
docs_url="/docs",
|
469 |
redoc_url="/redoc",
|
470 |
lifespan=lifespan
|
471 |
)
|
472 |
|
473 |
+
# Add middleware (same as before)
|
474 |
app.add_middleware(
|
475 |
CORSMiddleware,
|
476 |
+
allow_origins=["*"],
|
477 |
allow_credentials=True,
|
478 |
allow_methods=["*"],
|
479 |
allow_headers=["*"],
|
|
|
481 |
|
482 |
app.add_middleware(
|
483 |
TrustedHostMiddleware,
|
484 |
+
allowed_hosts=["*"]
|
485 |
)
|
486 |
|
487 |
+
# Enhanced prediction response model
|
488 |
+
class EnhancedPredictionResponse(BaseModel):
|
489 |
+
prediction: str = Field(..., description="Prediction result: 'Real' or 'Fake'")
|
490 |
+
confidence: float = Field(..., ge=0.0, le=1.0, description="Confidence score between 0 and 1")
|
491 |
+
model_version: str = Field(..., description="Version of the model used for prediction")
|
492 |
+
model_type: str = Field(..., description="Type of model: individual, ensemble, etc.")
|
493 |
+
is_ensemble: bool = Field(..., description="Whether an ensemble model was used")
|
494 |
+
ensemble_info: Optional[Dict[str, Any]] = Field(None, description="Ensemble-specific information")
|
495 |
+
timestamp: str = Field(..., description="Timestamp of the prediction")
|
496 |
+
processing_time: float = Field(..., description="Time taken for processing in seconds")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
|
498 |
+
# Enhanced health response model
|
499 |
+
class EnhancedHealthResponse(BaseModel):
|
500 |
+
status: str
|
501 |
+
timestamp: str
|
502 |
+
model_health: Dict[str, Any]
|
503 |
+
system_health: Dict[str, Any]
|
504 |
+
api_health: Dict[str, Any]
|
505 |
+
environment_info: Dict[str, Any]
|
506 |
+
ensemble_info: Optional[Dict[str, Any]] = None
|
507 |
|
508 |
+
# Request models remain the same...
|
509 |
class PredictionRequest(BaseModel):
|
510 |
text: str = Field(..., min_length=1, max_length=10000,
|
511 |
description="Text to analyze for fake news detection")
|
|
|
514 |
def validate_text(cls, v):
|
515 |
if not v or not v.strip():
|
516 |
raise ValueError('Text cannot be empty')
|
|
|
|
|
517 |
if len(v.strip()) < 10:
|
518 |
raise ValueError('Text must be at least 10 characters long')
|
|
|
|
|
519 |
suspicious_patterns = ['<script', 'javascript:', 'data:']
|
520 |
if any(pattern in v.lower() for pattern in suspicious_patterns):
|
521 |
raise ValueError('Text contains suspicious content')
|
|
|
522 |
return v.strip()
|
523 |
|
524 |
|
525 |
+
# Rate limiting and error handlers remain the same...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
526 |
async def rate_limit_check(request: Request):
|
527 |
"""Check rate limits"""
|
528 |
client_ip = request.client.host
|
|
|
531 |
# Clean old entries
|
532 |
rate_limit_storage[client_ip] = [
|
533 |
timestamp for timestamp in rate_limit_storage[client_ip]
|
534 |
+
if current_time - timestamp < 3600
|
535 |
]
|
536 |
|
537 |
# Check rate limit (100 requests per hour)
|
|
|
545 |
rate_limit_storage[client_ip].append(current_time)
|
546 |
|
547 |
|
|
|
548 |
@app.middleware("http")
|
549 |
async def log_requests(request: Request, call_next):
|
550 |
+
"""Log all requests with ensemble information"""
|
551 |
start_time = time.time()
|
|
|
552 |
response = await call_next(request)
|
|
|
553 |
process_time = time.time() - start_time
|
554 |
|
555 |
log_data = {
|
|
|
558 |
"client_ip": request.client.host,
|
559 |
"status_code": response.status_code,
|
560 |
"process_time": process_time,
|
561 |
+
"timestamp": datetime.now().isoformat(),
|
562 |
+
"model_type": model_manager.model_type,
|
563 |
+
"is_ensemble": model_manager.is_ensemble
|
564 |
}
|
565 |
|
566 |
logger.info(f"Request: {json.dumps(log_data)}")
|
|
|
567 |
return response
|
568 |
|
569 |
|
570 |
+
# Enhanced API Routes
|
571 |
+
@app.get("/")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
572 |
async def root():
|
573 |
+
"""Root endpoint with ensemble information"""
|
574 |
return {
|
575 |
+
"message": "Enhanced Fake News Detection API with Ensemble Support",
|
576 |
+
"version": "2.1.0",
|
577 |
"environment": path_manager.environment,
|
578 |
+
"model_type": model_manager.model_type,
|
579 |
+
"ensemble_support": model_manager.is_ensemble,
|
580 |
+
"lightgbm_available": LIGHTGBM_AVAILABLE,
|
581 |
"documentation": "/docs",
|
582 |
"health_check": "/health"
|
583 |
}
|
584 |
|
585 |
|
586 |
+
@app.post("/predict", response_model=EnhancedPredictionResponse)
|
587 |
async def predict(
|
588 |
request: PredictionRequest,
|
589 |
background_tasks: BackgroundTasks,
|
590 |
http_request: Request,
|
591 |
_: None = Depends(rate_limit_check)
|
592 |
+
):
|
593 |
"""
|
594 |
+
Enhanced prediction with ensemble model support
|
595 |
- **text**: The news article text to analyze
|
596 |
+
- **returns**: Enhanced prediction result with ensemble information
|
597 |
"""
|
598 |
start_time = time.time()
|
599 |
client_ip = http_request.client.host
|
|
|
607 |
detail="Model is not available. Please try again later."
|
608 |
)
|
609 |
|
610 |
+
# Make prediction using enhanced model manager
|
611 |
+
label, confidence = model_manager.predict(request.text)
|
612 |
+
processing_time = time.time() - start_time
|
613 |
+
|
614 |
+
# Prepare ensemble information
|
615 |
+
ensemble_info = None
|
616 |
+
if model_manager.is_ensemble:
|
617 |
+
ensemble_info = {
|
618 |
+
"ensemble_type": model_manager.ensemble_metadata.get('ensemble_type', 'unknown'),
|
619 |
+
"component_models": model_manager.ensemble_metadata.get('component_models', []),
|
620 |
+
"voting_type": model_manager.model_metadata.get('ensemble_details', {}).get('voting_type', 'soft')
|
621 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
622 |
|
623 |
# Record prediction for monitoring
|
624 |
+
if 'prediction_monitor' in globals():
|
625 |
+
prediction_monitor.record_prediction(
|
626 |
+
prediction=label,
|
627 |
+
confidence=confidence,
|
628 |
+
processing_time=processing_time,
|
629 |
+
text=request.text,
|
630 |
+
model_version=model_manager.model_metadata.get('model_version', 'unknown'),
|
631 |
+
client_id=client_ip,
|
632 |
+
user_agent=user_agent
|
633 |
+
)
|
634 |
|
635 |
# Record API request metrics
|
636 |
+
if 'metrics_collector' in globals():
|
637 |
+
metrics_collector.record_api_request(
|
638 |
+
endpoint="/predict",
|
639 |
+
method="POST",
|
640 |
+
response_time=processing_time,
|
641 |
+
status_code=200,
|
642 |
+
client_ip=client_ip
|
643 |
+
)
|
644 |
|
645 |
+
# Create enhanced response
|
646 |
+
response = EnhancedPredictionResponse(
|
647 |
prediction=label,
|
648 |
confidence=confidence,
|
649 |
model_version=model_manager.model_metadata.get('model_version', 'unknown'),
|
650 |
+
model_type=model_manager.model_type,
|
651 |
+
is_ensemble=model_manager.is_ensemble,
|
652 |
+
ensemble_info=ensemble_info,
|
653 |
timestamp=datetime.now().isoformat(),
|
654 |
processing_time=processing_time
|
655 |
)
|
|
|
669 |
except HTTPException:
|
670 |
# Record error for failed requests
|
671 |
processing_time = time.time() - start_time
|
672 |
+
if 'prediction_monitor' in globals():
|
673 |
+
prediction_monitor.record_error(
|
674 |
+
error_type="http_error",
|
675 |
+
error_message="Service unavailable",
|
676 |
+
context={"status_code": 503}
|
677 |
+
)
|
678 |
+
if 'metrics_collector' in globals():
|
679 |
+
metrics_collector.record_api_request(
|
680 |
+
endpoint="/predict",
|
681 |
+
method="POST",
|
682 |
+
response_time=processing_time,
|
683 |
+
status_code=503,
|
684 |
+
client_ip=client_ip
|
685 |
+
)
|
686 |
raise
|
687 |
except Exception as e:
|
688 |
processing_time = time.time() - start_time
|
689 |
|
690 |
# Record error
|
691 |
+
if 'prediction_monitor' in globals():
|
692 |
+
prediction_monitor.record_error(
|
693 |
+
error_type="prediction_error",
|
694 |
+
error_message=str(e),
|
695 |
+
context={"text_length": len(request.text)}
|
696 |
+
)
|
697 |
|
698 |
+
if 'metrics_collector' in globals():
|
699 |
+
metrics_collector.record_api_request(
|
700 |
+
endpoint="/predict",
|
701 |
+
method="POST",
|
702 |
+
response_time=processing_time,
|
703 |
+
status_code=500,
|
704 |
+
client_ip=client_ip
|
705 |
+
)
|
706 |
|
707 |
logger.error(f"Prediction failed: {e}")
|
708 |
raise HTTPException(
|
|
|
711 |
)
|
712 |
|
713 |
|
714 |
+
@app.get("/health", response_model=EnhancedHealthResponse)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
715 |
async def health_check():
|
716 |
"""
|
717 |
+
Enhanced health check endpoint with ensemble information
|
718 |
+
- **returns**: Detailed health status including ensemble information
|
719 |
"""
|
720 |
try:
|
721 |
# Model health
|
|
|
738 |
|
739 |
# Environment info
|
740 |
environment_info = path_manager.get_environment_info()
|
741 |
+
environment_info["lightgbm_available"] = LIGHTGBM_AVAILABLE
|
742 |
+
|
743 |
+
# Ensemble information
|
744 |
+
ensemble_info = None
|
745 |
+
if model_manager.is_ensemble:
|
746 |
+
ensemble_info = {
|
747 |
+
"is_ensemble": True,
|
748 |
+
"ensemble_type": model_manager.ensemble_metadata.get('ensemble_type', 'unknown'),
|
749 |
+
"component_models": model_manager.ensemble_metadata.get('component_models', []),
|
750 |
+
"ensemble_health": model_health.get('ensemble_info', {}),
|
751 |
+
"ensemble_metadata_available": Path("/tmp/ensemble_metadata.json").exists()
|
752 |
+
}
|
753 |
|
754 |
# Overall status
|
755 |
overall_status = "healthy" if model_health["status"] == "healthy" else "unhealthy"
|
756 |
|
757 |
+
return EnhancedHealthResponse(
|
758 |
status=overall_status,
|
759 |
timestamp=datetime.now().isoformat(),
|
760 |
model_health=model_health,
|
761 |
system_health=system_health,
|
762 |
api_health=api_health,
|
763 |
+
environment_info=environment_info,
|
764 |
+
ensemble_info=ensemble_info
|
765 |
)
|
766 |
|
767 |
except Exception as e:
|
768 |
logger.error(f"Health check failed: {e}")
|
769 |
+
return EnhancedHealthResponse(
|
770 |
status="unhealthy",
|
771 |
timestamp=datetime.now().isoformat(),
|
772 |
model_health={"status": "unhealthy", "error": str(e)},
|
773 |
system_health={"error": str(e)},
|
774 |
api_health={"error": str(e)},
|
775 |
+
environment_info={"error": str(e)},
|
776 |
+
ensemble_info={"error": str(e)} if model_manager.is_ensemble else None
|
777 |
)
|
778 |
|
779 |
|
780 |
+
@app.get("/model/info")
|
781 |
+
async def get_model_info():
|
782 |
"""
|
783 |
+
Get detailed model information including ensemble details
|
784 |
+
- **returns**: Comprehensive model information
|
785 |
"""
|
786 |
try:
|
787 |
+
model_info = {
|
788 |
+
"model_version": model_manager.model_metadata.get('model_version', 'unknown'),
|
789 |
+
"model_type": model_manager.model_type,
|
790 |
+
"is_ensemble": model_manager.is_ensemble,
|
791 |
+
"lightgbm_available": LIGHTGBM_AVAILABLE,
|
792 |
+
"training_method": model_manager.model_metadata.get('training_method', 'unknown'),
|
793 |
+
"timestamp": model_manager.model_metadata.get('timestamp', 'unknown'),
|
794 |
+
"performance_metrics": {
|
795 |
+
"test_accuracy": model_manager.model_metadata.get('test_accuracy', 'unknown'),
|
796 |
+
"test_f1": model_manager.model_metadata.get('test_f1', 'unknown'),
|
797 |
+
"cv_f1_mean": model_manager.model_metadata.get('cv_f1_mean', 'unknown'),
|
798 |
+
"cv_f1_std": model_manager.model_metadata.get('cv_f1_std', 'unknown')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
799 |
},
|
800 |
+
"feature_engineering": model_manager.model_metadata.get('feature_engineering', {}),
|
801 |
+
"training_config": model_manager.model_metadata.get('training_config', {})
|
802 |
}
|
803 |
|
804 |
+
# Add ensemble-specific information
|
805 |
+
if model_manager.is_ensemble:
|
806 |
+
ensemble_details = model_manager.model_metadata.get('ensemble_details', {})
|
807 |
+
model_info["ensemble_details"] = {
|
808 |
+
"ensemble_type": ensemble_details.get('ensemble_type', 'unknown'),
|
809 |
+
"component_models": ensemble_details.get('component_models', []),
|
810 |
+
"voting_type": ensemble_details.get('voting_type', 'soft'),
|
811 |
+
"component_performance": model_manager.model_metadata.get('component_performance', {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
812 |
}
|
813 |
+
|
814 |
+
# Add ensemble metadata if available
|
815 |
+
if model_manager.ensemble_metadata:
|
816 |
+
model_info["ensemble_metadata"] = model_manager.ensemble_metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
817 |
|
818 |
+
return model_info
|
819 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
820 |
except Exception as e:
|
821 |
+
logger.error(f"Model info retrieval failed: {e}")
|
822 |
raise HTTPException(
|
823 |
status_code=500,
|
824 |
+
detail=f"Failed to retrieve model info: {str(e)}"
|
825 |
)
|
|
|
826 |
|
827 |
+
|
828 |
+
@app.get("/model/performance")
|
829 |
+
async def get_model_performance():
|
830 |
"""
|
831 |
+
Get detailed model performance metrics including ensemble comparison
|
832 |
+
- **returns**: Performance metrics and comparisons
|
833 |
"""
|
834 |
try:
|
835 |
+
performance_info = {
|
836 |
+
"current_model": {
|
837 |
+
"model_type": model_manager.model_type,
|
838 |
+
"is_ensemble": model_manager.is_ensemble,
|
839 |
+
"test_metrics": {
|
840 |
+
"accuracy": model_manager.model_metadata.get('test_accuracy', 'unknown'),
|
841 |
+
"f1": model_manager.model_metadata.get('test_f1', 'unknown'),
|
842 |
+
"precision": model_manager.model_metadata.get('test_precision', 'unknown'),
|
843 |
+
"recall": model_manager.model_metadata.get('test_recall', 'unknown'),
|
844 |
+
"roc_auc": model_manager.model_metadata.get('test_roc_auc', 'unknown')
|
845 |
+
},
|
846 |
+
"cross_validation": model_manager.model_metadata.get('cross_validation', {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
847 |
},
|
848 |
+
"training_info": {
|
849 |
+
"training_method": model_manager.model_metadata.get('training_method', 'unknown'),
|
850 |
+
"lightgbm_used": model_manager.model_metadata.get('lightgbm_used', False),
|
851 |
+
"enhanced_features": model_manager.model_metadata.get('feature_engineering', {}).get('enhanced_features_used', False)
|
|
|
852 |
}
|
853 |
}
|
854 |
|
855 |
+
# Add ensemble-specific performance information
|
856 |
+
if model_manager.is_ensemble:
|
857 |
+
component_performance = model_manager.model_metadata.get('component_performance', {})
|
858 |
+
if component_performance:
|
859 |
+
performance_info["component_comparison"] = component_performance
|
860 |
+
|
861 |
+
# Calculate ensemble advantage
|
862 |
+
ensemble_f1 = model_manager.model_metadata.get('test_f1', 0)
|
863 |
+
if isinstance(ensemble_f1, (int, float)):
|
864 |
+
best_individual_f1 = max([comp.get('f1', 0) for comp in component_performance.values()], default=0)
|
865 |
+
if best_individual_f1 > 0:
|
866 |
+
ensemble_advantage = ensemble_f1 - best_individual_f1
|
867 |
+
performance_info["ensemble_advantage"] = {
|
868 |
+
"f1_improvement": ensemble_advantage,
|
869 |
+
"relative_improvement": (ensemble_advantage / best_individual_f1) * 100 if best_individual_f1 > 0 else 0
|
870 |
+
}
|
871 |
|
872 |
+
return performance_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
873 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
874 |
except Exception as e:
|
875 |
+
logger.error(f"Performance info retrieval failed: {e}")
|
876 |
raise HTTPException(
|
877 |
status_code=500,
|
878 |
+
detail=f"Failed to retrieve performance info: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
879 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
880 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
881 |
|
882 |
+
# Keep all other existing endpoints (cv/results, metrics, etc.) but enhance them with ensemble information where relevant
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
883 |
|
884 |
+
@app.get("/ensemble/status")
|
885 |
+
async def get_ensemble_status():
|
886 |
+
"""
|
887 |
+
Get ensemble-specific status information
|
888 |
+
- **returns**: Ensemble status and configuration
|
889 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
890 |
try:
|
891 |
+
if not model_manager.is_ensemble:
|
|
|
|
|
|
|
|
|
|
|
892 |
return {
|
893 |
+
"ensemble_active": False,
|
894 |
+
"message": "Current model is not an ensemble",
|
895 |
+
"model_type": model_manager.model_type,
|
896 |
+
"lightgbm_available": LIGHTGBM_AVAILABLE
|
897 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
898 |
|
899 |
+
ensemble_status = {
|
900 |
+
"ensemble_active": True,
|
901 |
+
"ensemble_type": model_manager.ensemble_metadata.get('ensemble_type', 'unknown'),
|
902 |
+
"component_models": model_manager.ensemble_metadata.get('component_models', []),
|
903 |
+
"ensemble_health": model_manager.health_status,
|
904 |
+
"lightgbm_available": LIGHTGBM_AVAILABLE,
|
905 |
+
"lightgbm_used": 'lightgbm' in model_manager.ensemble_metadata.get('component_models', []),
|
906 |
+
"voting_type": model_manager.model_metadata.get('ensemble_details', {}).get('voting_type', 'unknown'),
|
907 |
+
"model_version": model_manager.model_metadata.get('model_version', 'unknown'),
|
908 |
+
"training_timestamp": model_manager.model_metadata.get('timestamp', 'unknown')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
909 |
}
|
|
|
|
|
|
|
|
|
910 |
|
911 |
+
# Add performance comparison if available
|
912 |
+
component_performance = model_manager.model_metadata.get('component_performance', {})
|
913 |
+
if component_performance:
|
914 |
+
ensemble_status["component_performance"] = component_performance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
915 |
|
916 |
+
# Calculate which model would have been best individually
|
917 |
+
best_individual = max(component_performance.items(), key=lambda x: x[1].get('f1', 0), default=('none', {'f1': 0}))
|
918 |
+
ensemble_status["best_individual_model"] = {
|
919 |
+
"name": best_individual[0],
|
920 |
+
"f1_score": best_individual[1].get('f1', 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
921 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
922 |
|
923 |
+
return ensemble_status
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
924 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
925 |
except Exception as e:
|
926 |
+
logger.error(f"Ensemble status retrieval failed: {e}")
|
927 |
+
raise HTTPException(
|
928 |
+
status_code=500,
|
929 |
+
detail=f"Failed to retrieve ensemble status: {str(e)}"
|
930 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|