Commit
·
63682de
1
Parent(s):
b44772d
Update model/train.py
Browse filesAdding LightGBM for Ensemble Model
- model/train.py +949 -717
model/train.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# Enhanced
|
| 2 |
|
| 3 |
import seaborn as sns
|
| 4 |
import matplotlib.pyplot as plt
|
|
@@ -14,7 +14,7 @@ from sklearn.model_selection import (
|
|
| 14 |
train_test_split, cross_val_score, GridSearchCV,
|
| 15 |
StratifiedKFold, validation_curve, cross_validate
|
| 16 |
)
|
| 17 |
-
from sklearn.ensemble import RandomForestClassifier
|
| 18 |
from sklearn.linear_model import LogisticRegression
|
| 19 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 20 |
import pandas as pd
|
|
@@ -31,6 +31,16 @@ from datetime import datetime, timedelta
|
|
| 31 |
from typing import Dict, Tuple, Optional, Any, List
|
| 32 |
import warnings
|
| 33 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
warnings.filterwarnings('ignore')
|
| 35 |
|
| 36 |
# Import enhanced feature engineering components
|
|
@@ -60,454 +70,727 @@ logging.basicConfig(
|
|
| 60 |
logger = logging.getLogger(__name__)
|
| 61 |
|
| 62 |
|
| 63 |
-
|
| 64 |
-
"""
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
text = re.sub(r'http\S+|www\S+|https\S+', '', text)
|
| 73 |
-
|
| 74 |
-
# Remove email addresses
|
| 75 |
-
text = re.sub(r'\S+@\S+', '', text)
|
| 76 |
|
| 77 |
-
|
| 78 |
-
text = re.sub(r'[!]{2,}', '!', text)
|
| 79 |
-
text = re.sub(r'[?]{2,}', '?', text)
|
| 80 |
-
text = re.sub(r'[.]{3,}', '...', text)
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
#
|
| 86 |
-
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
# Process all texts
|
| 91 |
-
processed = []
|
| 92 |
-
for text in texts:
|
| 93 |
-
processed.append(clean_single_text(text))
|
| 94 |
-
|
| 95 |
-
return processed
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
self.
|
| 111 |
-
current_time = time.time()
|
| 112 |
-
elapsed = current_time - self.start_time
|
| 113 |
|
| 114 |
-
#
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
#
|
| 118 |
-
if self.
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
eta = timedelta(seconds=int(eta_seconds))
|
| 123 |
else:
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
bar_length = 30
|
| 128 |
-
filled_length = int(bar_length * self.current_step // self.total_steps)
|
| 129 |
-
bar = '█' * filled_length + '▒' * (bar_length - filled_length)
|
| 130 |
|
| 131 |
-
#
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
print(status_msg, end='', flush=True)
|
| 139 |
|
| 140 |
-
#
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
}
|
| 150 |
-
print(f"\nPROGRESS_JSON: {json.dumps(progress_json)}")
|
| 151 |
-
|
| 152 |
-
# Store step time for better estimation
|
| 153 |
-
if len(self.step_times) >= 3: # Keep last 3 step times for moving average
|
| 154 |
-
self.step_times.pop(0)
|
| 155 |
-
self.step_times.append(current_time - (self.start_time + sum(self.step_times)))
|
| 156 |
-
|
| 157 |
-
def finish(self):
|
| 158 |
-
"""Complete progress tracking"""
|
| 159 |
-
total_time = time.time() - self.start_time
|
| 160 |
-
print(f"\n{self.description} completed in {timedelta(seconds=int(total_time))}")
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
def estimate_training_time(dataset_size: int, enable_tuning: bool = True, cv_folds: int = 5,
|
| 164 |
-
use_enhanced_features: bool = False) -> Dict:
|
| 165 |
-
"""Estimate training time based on dataset characteristics and feature complexity"""
|
| 166 |
-
|
| 167 |
-
# Base time estimates (in seconds) based on empirical testing
|
| 168 |
-
base_times = {
|
| 169 |
-
'preprocessing': max(0.1, dataset_size * 0.001), # ~1ms per sample
|
| 170 |
-
'vectorization': max(0.5, dataset_size * 0.01), # ~10ms per sample
|
| 171 |
-
'feature_selection': max(0.2, dataset_size * 0.005), # ~5ms per sample
|
| 172 |
-
'simple_training': max(1.0, dataset_size * 0.02), # ~20ms per sample
|
| 173 |
-
'evaluation': max(0.5, dataset_size * 0.01), # ~10ms per sample
|
| 174 |
-
}
|
| 175 |
-
|
| 176 |
-
# Enhanced feature engineering time multipliers
|
| 177 |
-
if use_enhanced_features:
|
| 178 |
-
base_times['preprocessing'] *= 2.5 # More complex preprocessing
|
| 179 |
-
base_times['vectorization'] *= 1.5 # Additional feature extraction
|
| 180 |
-
base_times['feature_selection'] *= 2.0 # More features to select from
|
| 181 |
-
base_times['enhanced_feature_extraction'] = max(2.0, dataset_size * 0.05) # New step
|
| 182 |
-
|
| 183 |
-
# Hyperparameter tuning multipliers
|
| 184 |
-
tuning_multipliers = {
|
| 185 |
-
'logistic_regression': 8 if enable_tuning else 1, # 8 param combinations
|
| 186 |
-
'random_forest': 12 if enable_tuning else 1, # 12 param combinations
|
| 187 |
-
}
|
| 188 |
-
|
| 189 |
-
# Cross-validation multiplier
|
| 190 |
-
cv_multiplier = cv_folds if dataset_size > 100 else 1
|
| 191 |
-
|
| 192 |
-
# Calculate estimates
|
| 193 |
-
estimates = {}
|
| 194 |
-
|
| 195 |
-
# Preprocessing steps
|
| 196 |
-
estimates['data_loading'] = 0.5
|
| 197 |
-
estimates['preprocessing'] = base_times['preprocessing']
|
| 198 |
-
estimates['vectorization'] = base_times['vectorization']
|
| 199 |
-
|
| 200 |
-
if use_enhanced_features:
|
| 201 |
-
estimates['enhanced_feature_extraction'] = base_times['enhanced_feature_extraction']
|
| 202 |
-
|
| 203 |
-
estimates['feature_selection'] = base_times['feature_selection']
|
| 204 |
-
|
| 205 |
-
# Model training (now includes CV)
|
| 206 |
-
for model_name, multiplier in tuning_multipliers.items():
|
| 207 |
-
model_time = base_times['simple_training'] * multiplier * cv_multiplier
|
| 208 |
-
estimates[f'{model_name}_training'] = model_time
|
| 209 |
-
estimates[f'{model_name}_evaluation'] = base_times['evaluation']
|
| 210 |
-
|
| 211 |
-
# Cross-validation overhead
|
| 212 |
-
estimates['cross_validation'] = base_times['simple_training'] * cv_folds * 0.5
|
| 213 |
-
|
| 214 |
-
# Model saving
|
| 215 |
-
estimates['model_saving'] = 1.0
|
| 216 |
-
|
| 217 |
-
# Total estimate
|
| 218 |
-
total_estimate = sum(estimates.values())
|
| 219 |
-
|
| 220 |
-
# Add buffer for overhead (more for enhanced features)
|
| 221 |
-
buffer_multiplier = 1.4 if use_enhanced_features else 1.2
|
| 222 |
-
total_estimate *= buffer_multiplier
|
| 223 |
-
|
| 224 |
-
return {
|
| 225 |
-
'detailed_estimates': estimates,
|
| 226 |
-
'total_seconds': total_estimate,
|
| 227 |
-
'total_formatted': str(timedelta(seconds=int(total_estimate))),
|
| 228 |
-
'dataset_size': dataset_size,
|
| 229 |
-
'enable_tuning': enable_tuning,
|
| 230 |
-
'cv_folds': cv_folds,
|
| 231 |
-
'use_enhanced_features': use_enhanced_features
|
| 232 |
-
}
|
| 233 |
-
|
| 234 |
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
-
|
| 251 |
-
unique_classes = np.unique(y)
|
| 252 |
-
min_class_count = min([np.sum(y == cls) for cls in unique_classes])
|
| 253 |
|
| 254 |
-
#
|
| 255 |
-
|
| 256 |
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
-
|
|
|
|
|
|
|
| 260 |
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
)
|
| 266 |
-
|
| 267 |
-
def perform_cross_validation(self, pipeline, X, y, cv_strategy=None) -> Dict:
|
| 268 |
-
"""Perform comprehensive cross-validation with multiple metrics"""
|
| 269 |
|
| 270 |
-
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
-
logger.info(
|
| 274 |
-
|
| 275 |
-
# Define scoring metrics
|
| 276 |
-
scoring_metrics = {
|
| 277 |
-
'accuracy': 'accuracy',
|
| 278 |
-
'precision': 'precision_weighted',
|
| 279 |
-
'recall': 'recall_weighted',
|
| 280 |
-
'f1': 'f1_weighted',
|
| 281 |
-
'roc_auc': 'roc_auc'
|
| 282 |
-
}
|
| 283 |
|
| 284 |
try:
|
| 285 |
-
#
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
)
|
| 294 |
|
| 295 |
-
#
|
| 296 |
-
|
| 297 |
-
'
|
| 298 |
-
'
|
| 299 |
-
|
| 300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
}
|
| 302 |
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
test_key = f'test_{metric_name}'
|
| 306 |
-
train_key = f'train_{metric_name}'
|
| 307 |
-
|
| 308 |
-
if test_key in cv_scores:
|
| 309 |
-
test_scores = cv_scores[test_key]
|
| 310 |
-
cv_results['test_scores'][metric_name] = {
|
| 311 |
-
'mean': float(np.mean(test_scores)),
|
| 312 |
-
'std': float(np.std(test_scores)),
|
| 313 |
-
'min': float(np.min(test_scores)),
|
| 314 |
-
'max': float(np.max(test_scores)),
|
| 315 |
-
'scores': test_scores.tolist()
|
| 316 |
-
}
|
| 317 |
-
|
| 318 |
-
if train_key in cv_scores:
|
| 319 |
-
train_scores = cv_scores[train_key]
|
| 320 |
-
cv_results['train_scores'][metric_name] = {
|
| 321 |
-
'mean': float(np.mean(train_scores)),
|
| 322 |
-
'std': float(np.std(train_scores)),
|
| 323 |
-
'min': float(np.min(train_scores)),
|
| 324 |
-
'max': float(np.max(train_scores)),
|
| 325 |
-
'scores': train_scores.tolist()
|
| 326 |
-
}
|
| 327 |
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
test_mean = cv_results['test_scores']['accuracy']['mean']
|
| 351 |
-
cv_results['overfitting_score'] = float(train_mean - test_mean)
|
| 352 |
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
|
| 363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
except Exception as e:
|
| 366 |
-
logger.error(f"
|
| 367 |
-
return
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
}
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
try:
|
| 377 |
-
|
| 378 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
-
|
| 381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
},
|
| 399 |
-
'effect_size': float(abs(t_stat) / np.sqrt(len(scores1))) if len(scores1) > 0 else 0
|
| 400 |
-
}
|
| 401 |
|
| 402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
|
|
|
|
|
|
|
|
|
| 407 |
|
|
|
|
| 408 |
|
| 409 |
-
|
| 410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
self.features_dir = self.base_dir / "features" # New for enhanced features
|
| 436 |
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
dir_path.chmod(0o755)
|
| 443 |
-
except:
|
| 444 |
-
pass
|
| 445 |
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
self.model_path = Path("/tmp/model.pkl")
|
| 449 |
-
self.vectorizer_path = Path("/tmp/vectorizer.pkl")
|
| 450 |
-
self.pipeline_path = Path("/tmp/pipeline.pkl")
|
| 451 |
-
self.metadata_path = Path("/tmp/metadata.json")
|
| 452 |
-
self.evaluation_path = self.results_dir / "evaluation_results.json"
|
| 453 |
-
|
| 454 |
-
# Enhanced feature paths
|
| 455 |
-
self.feature_engineer_path = Path("/tmp/feature_engineer.pkl")
|
| 456 |
-
self.feature_importance_path = self.results_dir / "feature_importance.json"
|
| 457 |
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
|
| 482 |
-
def setup_models(self):
|
| 483 |
-
"""Setup model configurations for comparison"""
|
| 484 |
-
self.models = {
|
| 485 |
-
'logistic_regression': {
|
| 486 |
-
'model': LogisticRegression(
|
| 487 |
-
max_iter=self.max_iter,
|
| 488 |
-
class_weight=self.class_weight,
|
| 489 |
-
random_state=self.random_state,
|
| 490 |
-
n_jobs=-1
|
| 491 |
-
),
|
| 492 |
-
'param_grid': {
|
| 493 |
-
'model__C': [0.1, 1, 10],
|
| 494 |
-
'model__penalty': ['l2']
|
| 495 |
-
}
|
| 496 |
-
},
|
| 497 |
-
'random_forest': {
|
| 498 |
-
'model': RandomForestClassifier(
|
| 499 |
-
n_estimators=50,
|
| 500 |
-
class_weight=self.class_weight,
|
| 501 |
-
random_state=self.random_state,
|
| 502 |
-
n_jobs=-1
|
| 503 |
-
),
|
| 504 |
-
'param_grid': {
|
| 505 |
-
'model__n_estimators': [50, 100],
|
| 506 |
-
'model__max_depth': [10, None]
|
| 507 |
-
}
|
| 508 |
-
}
|
| 509 |
-
}
|
| 510 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 511 |
def load_and_validate_data(self) -> Tuple[bool, Optional[pd.DataFrame], str]:
|
| 512 |
"""Load and validate training data"""
|
| 513 |
try:
|
|
@@ -859,356 +1142,260 @@ class EnhancedModelTrainer:
|
|
| 859 |
|
| 860 |
return results
|
| 861 |
|
| 862 |
-
def select_best_model(self, results: Dict) -> Tuple[str, Any, Dict]:
|
| 863 |
-
"""Select the best performing model based on CV results"""
|
| 864 |
-
|
| 865 |
-
if self.progress_tracker:
|
| 866 |
-
self.progress_tracker.update("Selecting best model")
|
| 867 |
-
|
| 868 |
-
best_model_name = None
|
| 869 |
-
best_model = None
|
| 870 |
-
best_score = -1
|
| 871 |
-
best_metrics = None
|
| 872 |
-
|
| 873 |
-
for model_name, result in results.items():
|
| 874 |
-
if 'error' in result:
|
| 875 |
-
continue
|
| 876 |
-
|
| 877 |
-
# Prioritize CV F1 score if available, fallback to test F1
|
| 878 |
-
cv_results = result['evaluation_metrics'].get('cross_validation', {})
|
| 879 |
-
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
| 880 |
-
f1_score = cv_results['test_scores']['f1']['mean']
|
| 881 |
-
score_type = "CV F1"
|
| 882 |
-
else:
|
| 883 |
-
f1_score = result['evaluation_metrics']['f1']
|
| 884 |
-
score_type = "Test F1"
|
| 885 |
-
|
| 886 |
-
if f1_score > best_score:
|
| 887 |
-
best_score = f1_score
|
| 888 |
-
best_model_name = model_name
|
| 889 |
-
best_model = result['model']
|
| 890 |
-
best_metrics = result['evaluation_metrics']
|
| 891 |
|
| 892 |
-
|
| 893 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 894 |
|
| 895 |
-
logger.info(f"Best model: {best_model_name} with {score_type} score: {best_score:.4f}")
|
| 896 |
-
return best_model_name, best_model, best_metrics
|
| 897 |
|
| 898 |
-
|
| 899 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 900 |
try:
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
# Try alternative path
|
| 911 |
-
alt_pipeline_path = Path("/tmp") / "pipeline.pkl"
|
| 912 |
-
joblib.dump(model, alt_pipeline_path)
|
| 913 |
-
logger.info(f"✅ Saved pipeline to {alt_pipeline_path}")
|
| 914 |
-
|
| 915 |
-
# Save enhanced feature engineer if available
|
| 916 |
-
if self.use_enhanced_features and self.feature_engineer is not None:
|
| 917 |
-
try:
|
| 918 |
-
self.feature_engineer.save_pipeline(self.feature_engineer_path)
|
| 919 |
-
logger.info(f"✅ Saved feature engineer to {self.feature_engineer_path}")
|
| 920 |
-
except Exception as e:
|
| 921 |
-
logger.warning(f"Could not save feature engineer: {e}")
|
| 922 |
-
|
| 923 |
-
# Save individual components for backward compatibility
|
| 924 |
-
try:
|
| 925 |
-
if hasattr(model, 'named_steps'):
|
| 926 |
-
if 'model' in model.named_steps:
|
| 927 |
-
joblib.dump(model.named_steps['model'], self.model_path)
|
| 928 |
-
logger.info(f"✅ Saved model component to {self.model_path}")
|
| 929 |
-
|
| 930 |
-
# Save vectorizer (standard pipeline) or enhanced features reference
|
| 931 |
-
if 'vectorize' in model.named_steps:
|
| 932 |
-
joblib.dump(model.named_steps['vectorize'], self.vectorizer_path)
|
| 933 |
-
logger.info(f"✅ Saved vectorizer to {self.vectorizer_path}")
|
| 934 |
-
elif 'enhanced_features' in model.named_steps:
|
| 935 |
-
# Save reference to enhanced features
|
| 936 |
-
enhanced_ref = {
|
| 937 |
-
'type': 'enhanced_features',
|
| 938 |
-
'feature_engineer_path': str(self.feature_engineer_path),
|
| 939 |
-
'metadata': self.feature_engineer.get_feature_metadata() if self.feature_engineer else {}
|
| 940 |
-
}
|
| 941 |
-
joblib.dump(enhanced_ref, self.vectorizer_path)
|
| 942 |
-
logger.info(f"✅ Saved enhanced features reference to {self.vectorizer_path}")
|
| 943 |
-
|
| 944 |
-
except Exception as e:
|
| 945 |
-
logger.warning(f"Could not save individual components: {e}")
|
| 946 |
-
|
| 947 |
-
# Generate data hash
|
| 948 |
-
data_hash = hashlib.md5(str(datetime.now()).encode()).hexdigest()
|
| 949 |
-
|
| 950 |
-
# Extract CV results
|
| 951 |
-
cv_results = metrics.get('cross_validation', {})
|
| 952 |
|
| 953 |
-
#
|
| 954 |
-
|
| 955 |
-
'
|
| 956 |
-
'
|
| 957 |
-
'
|
| 958 |
-
|
| 959 |
-
'enhanced_features_available': ENHANCED_FEATURES_AVAILABLE,
|
| 960 |
-
'enhanced_features_used': self.use_enhanced_features
|
| 961 |
-
},
|
| 962 |
-
'data_version': data_hash,
|
| 963 |
-
'test_accuracy': metrics['accuracy'],
|
| 964 |
-
'test_f1': metrics['f1'],
|
| 965 |
-
'test_precision': metrics['precision'],
|
| 966 |
-
'test_recall': metrics['recall'],
|
| 967 |
-
'test_roc_auc': metrics['roc_auc'],
|
| 968 |
-
'overfitting_score': metrics.get('overfitting_score', 'Unknown'),
|
| 969 |
-
'timestamp': datetime.now().isoformat(),
|
| 970 |
-
'training_config': {
|
| 971 |
-
'test_size': self.test_size,
|
| 972 |
-
'cv_folds': self.cv_folds,
|
| 973 |
-
'max_features': self.max_features,
|
| 974 |
-
'ngram_range': self.ngram_range,
|
| 975 |
-
'feature_selection_k': self.feature_selection_k,
|
| 976 |
-
'use_enhanced_features': self.use_enhanced_features
|
| 977 |
-
}
|
| 978 |
}
|
| 979 |
|
| 980 |
-
#
|
| 981 |
-
|
| 982 |
-
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
|
| 986 |
-
|
| 987 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 988 |
}
|
| 989 |
|
| 990 |
-
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
|
| 994 |
-
|
| 995 |
-
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
'feature_metadata': feature_metadata,
|
| 1000 |
-
'timestamp': datetime.now().isoformat(),
|
| 1001 |
-
'model_version': metadata['model_version']
|
| 1002 |
-
}
|
| 1003 |
-
|
| 1004 |
-
with open(self.feature_importance_path, 'w') as f:
|
| 1005 |
-
json.dump(feature_analysis, f, indent=2)
|
| 1006 |
-
logger.info(f"✅ Saved feature importance analysis to {self.feature_importance_path}")
|
| 1007 |
-
|
| 1008 |
-
except Exception as e:
|
| 1009 |
-
logger.warning(f"Could not save feature importance: {e}")
|
| 1010 |
|
| 1011 |
-
#
|
| 1012 |
-
|
| 1013 |
-
|
| 1014 |
-
'
|
| 1015 |
-
'test_scores':
|
| 1016 |
-
'train_scores':
|
| 1017 |
-
'overfitting_score': cv_results.get('overfitting_score', 'Unknown'),
|
| 1018 |
-
'stability_score': cv_results.get('stability_score', 'Unknown'),
|
| 1019 |
-
'individual_fold_results': cv_results.get('fold_results', [])
|
| 1020 |
}
|
| 1021 |
|
| 1022 |
-
|
| 1023 |
-
|
| 1024 |
-
|
| 1025 |
-
|
| 1026 |
-
|
| 1027 |
-
|
| 1028 |
-
|
| 1029 |
-
|
| 1030 |
-
metadata['cv_accuracy_mean'] = cv_results['test_scores']['accuracy']['mean']
|
| 1031 |
-
metadata['cv_accuracy_std'] = cv_results['test_scores']['accuracy']['std']
|
| 1032 |
-
|
| 1033 |
-
# Add model comparison results if available
|
| 1034 |
-
if len(results) > 1:
|
| 1035 |
-
model_comparison = {}
|
| 1036 |
-
for other_model_name, other_result in results.items():
|
| 1037 |
-
if other_model_name != model_name and 'error' not in other_result:
|
| 1038 |
-
other_cv = other_result['evaluation_metrics'].get('cross_validation', {})
|
| 1039 |
-
if cv_results and other_cv:
|
| 1040 |
-
comparison = self.cv_manager.compare_cv_results(cv_results, other_cv)
|
| 1041 |
-
model_comparison[other_model_name] = comparison
|
| 1042 |
|
| 1043 |
-
|
| 1044 |
-
metadata['model_comparison'] = model_comparison
|
| 1045 |
-
|
| 1046 |
-
# Save metadata with error handling
|
| 1047 |
-
try:
|
| 1048 |
-
with open(self.metadata_path, 'w') as f:
|
| 1049 |
-
json.dump(metadata, f, indent=2)
|
| 1050 |
-
logger.info(f"✅ Saved enhanced metadata to {self.metadata_path}")
|
| 1051 |
-
except Exception as e:
|
| 1052 |
-
logger.warning(f"Could not save metadata: {e}")
|
| 1053 |
-
|
| 1054 |
-
# Log feature engineering summary
|
| 1055 |
-
if self.use_enhanced_features and feature_metadata:
|
| 1056 |
-
logger.info(f"✅ Enhanced features summary:")
|
| 1057 |
-
logger.info(f" Total features: {feature_metadata.get('total_features', 0)}")
|
| 1058 |
-
for feature_type, count in feature_metadata.get('feature_types', {}).items():
|
| 1059 |
-
logger.info(f" {feature_type}: {count}")
|
| 1060 |
-
|
| 1061 |
-
logger.info(f"✅ Model artifacts saved successfully with {'enhanced' if self.use_enhanced_features else 'standard'} features")
|
| 1062 |
-
return True
|
| 1063 |
-
|
| 1064 |
-
except Exception as e:
|
| 1065 |
-
logger.error(f"Failed to save model artifacts: {str(e)}")
|
| 1066 |
-
# Try to save at least the core pipeline
|
| 1067 |
-
try:
|
| 1068 |
-
joblib.dump(model, Path("/tmp/pipeline_backup.pkl"))
|
| 1069 |
-
logger.info("✅ Saved backup pipeline")
|
| 1070 |
-
return True
|
| 1071 |
-
except Exception as e2:
|
| 1072 |
-
logger.error(f"Failed to save backup pipeline: {str(e2)}")
|
| 1073 |
-
return False
|
| 1074 |
-
|
| 1075 |
-
def train_model(self, data_path: str = None, force_enhanced: bool = None) -> Tuple[bool, str]:
|
| 1076 |
-
"""Main training function with enhanced feature engineering pipeline"""
|
| 1077 |
-
try:
|
| 1078 |
-
# Override enhanced features setting if specified
|
| 1079 |
-
if force_enhanced is not None:
|
| 1080 |
-
original_setting = self.use_enhanced_features
|
| 1081 |
-
self.use_enhanced_features = force_enhanced and ENHANCED_FEATURES_AVAILABLE
|
| 1082 |
-
if force_enhanced and not ENHANCED_FEATURES_AVAILABLE:
|
| 1083 |
-
logger.warning("Enhanced features requested but not available, using standard features")
|
| 1084 |
|
| 1085 |
-
|
| 1086 |
-
|
| 1087 |
-
|
| 1088 |
-
|
| 1089 |
-
|
| 1090 |
-
self.data_path = Path(data_path)
|
| 1091 |
-
|
| 1092 |
-
# Load and validate data
|
| 1093 |
-
success, df, message = self.load_and_validate_data()
|
| 1094 |
-
if not success:
|
| 1095 |
-
return False, message
|
| 1096 |
-
|
| 1097 |
-
# Estimate training time and setup progress tracker
|
| 1098 |
-
time_estimate = estimate_training_time(
|
| 1099 |
-
len(df),
|
| 1100 |
-
enable_tuning=True,
|
| 1101 |
-
cv_folds=self.cv_folds,
|
| 1102 |
-
use_enhanced_features=self.use_enhanced_features
|
| 1103 |
-
)
|
| 1104 |
|
| 1105 |
-
|
| 1106 |
-
|
| 1107 |
-
|
| 1108 |
-
|
| 1109 |
-
|
| 1110 |
-
print(f"Models to train: {len(self.models)}")
|
| 1111 |
-
print(f"Hyperparameter tuning: Enabled")
|
| 1112 |
-
if self.use_enhanced_features:
|
| 1113 |
-
print(f"Enhanced features: Sentiment, Readability, Entities, Linguistic")
|
| 1114 |
-
print()
|
| 1115 |
-
|
| 1116 |
-
# Setup progress tracker (adjusted for enhanced features)
|
| 1117 |
-
base_steps = 4 + (len(self.models) * 3) + 1 # Basic steps
|
| 1118 |
-
enhanced_steps = 2 if self.use_enhanced_features else 0 # Feature engineering steps
|
| 1119 |
-
total_steps = base_steps + enhanced_steps
|
| 1120 |
-
self.progress_tracker = ProgressTracker(total_steps, f"{feature_type.title()} Training Progress")
|
| 1121 |
-
|
| 1122 |
-
# Prepare data
|
| 1123 |
-
X = df['text'].values
|
| 1124 |
-
y = df['label'].values
|
| 1125 |
-
|
| 1126 |
-
# Train-test split with smart handling for small datasets
|
| 1127 |
-
self.progress_tracker.update("Splitting data")
|
| 1128 |
|
| 1129 |
-
|
| 1130 |
-
|
| 1131 |
-
|
| 1132 |
-
else:
|
| 1133 |
-
test_size = self.test_size
|
| 1134 |
-
|
| 1135 |
-
# Check if stratification is possible
|
| 1136 |
-
label_counts = pd.Series(y).value_counts()
|
| 1137 |
-
min_class_count = label_counts.min()
|
| 1138 |
-
can_stratify = min_class_count >= 2 and len(y) >= 4
|
| 1139 |
|
| 1140 |
-
|
| 1141 |
-
X, y,
|
| 1142 |
-
test_size=test_size,
|
| 1143 |
-
stratify=y if can_stratify else None,
|
| 1144 |
-
random_state=self.random_state
|
| 1145 |
-
)
|
| 1146 |
-
|
| 1147 |
-
logger.info(f"Data split: {len(X_train)} train, {len(X_test)} test")
|
| 1148 |
|
| 1149 |
-
|
| 1150 |
-
|
| 1151 |
-
|
| 1152 |
-
|
| 1153 |
-
|
| 1154 |
-
|
| 1155 |
-
|
| 1156 |
-
results = self.train_and_evaluate_models(X_train, X_test, y_train, y_test)
|
| 1157 |
-
|
| 1158 |
-
# Select best model
|
| 1159 |
-
best_model_name, best_model, best_metrics = self.select_best_model(results)
|
| 1160 |
-
|
| 1161 |
-
# Save model artifacts with enhanced feature information
|
| 1162 |
-
if not self.save_model_artifacts(best_model, best_model_name, best_metrics, results):
|
| 1163 |
-
return False, "Failed to save model artifacts"
|
| 1164 |
-
|
| 1165 |
-
# Finish progress tracking
|
| 1166 |
-
self.progress_tracker.finish()
|
| 1167 |
-
|
| 1168 |
-
# Create success message with enhanced feature information
|
| 1169 |
-
cv_results = best_metrics.get('cross_validation', {})
|
| 1170 |
-
cv_info = ""
|
| 1171 |
-
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
| 1172 |
-
cv_f1_mean = cv_results['test_scores']['f1']['mean']
|
| 1173 |
-
cv_f1_std = cv_results['test_scores']['f1']['std']
|
| 1174 |
-
cv_info = f", CV F1: {cv_f1_mean:.4f} (±{cv_f1_std:.4f})"
|
| 1175 |
-
|
| 1176 |
-
# Enhanced features summary
|
| 1177 |
-
feature_info = ""
|
| 1178 |
-
if self.use_enhanced_features:
|
| 1179 |
-
feature_metadata = best_metrics.get('feature_metadata', {})
|
| 1180 |
-
if feature_metadata:
|
| 1181 |
-
total_features = feature_metadata.get('total_features', 0)
|
| 1182 |
-
feature_info = f", Enhanced Features: {total_features}"
|
| 1183 |
-
|
| 1184 |
-
success_message = (
|
| 1185 |
-
f"{feature_type.title()} model training completed successfully. "
|
| 1186 |
-
f"Best model: {best_model_name} "
|
| 1187 |
-
f"(Test F1: {best_metrics['f1']:.4f}, Test Accuracy: {best_metrics['accuracy']:.4f}{cv_info}{feature_info})"
|
| 1188 |
-
)
|
| 1189 |
|
| 1190 |
-
logger.info(success_message)
|
| 1191 |
-
return True, success_message
|
| 1192 |
|
| 1193 |
-
|
| 1194 |
-
|
| 1195 |
-
|
| 1196 |
-
|
| 1197 |
-
|
| 1198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1199 |
|
| 1200 |
|
| 1201 |
def main():
|
| 1202 |
-
"""Main execution function with enhanced
|
| 1203 |
import argparse
|
| 1204 |
|
| 1205 |
# Parse command line arguments
|
| 1206 |
-
parser = argparse.ArgumentParser(description='Train fake news detection model with
|
| 1207 |
parser.add_argument('--data_path', type=str, help='Path to training data CSV file')
|
| 1208 |
parser.add_argument('--config_path', type=str, help='Path to training configuration JSON file')
|
| 1209 |
parser.add_argument('--cv_folds', type=int, default=5, help='Number of cross-validation folds')
|
| 1210 |
parser.add_argument('--enhanced_features', action='store_true', help='Force use of enhanced features')
|
| 1211 |
parser.add_argument('--standard_features', action='store_true', help='Force use of standard TF-IDF features only')
|
|
|
|
|
|
|
| 1212 |
args = parser.parse_args()
|
| 1213 |
|
| 1214 |
# Determine feature engineering mode
|
|
@@ -1222,7 +1409,18 @@ def main():
|
|
| 1222 |
use_enhanced = False
|
| 1223 |
logger.info("Standard features explicitly requested")
|
| 1224 |
|
| 1225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1226 |
|
| 1227 |
# Apply CV folds from command line
|
| 1228 |
if args.cv_folds:
|
|
@@ -1246,6 +1444,14 @@ def main():
|
|
| 1246 |
if 'enhanced_features' in config and use_enhanced is None:
|
| 1247 |
trainer.use_enhanced_features = config['enhanced_features'] and ENHANCED_FEATURES_AVAILABLE
|
| 1248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1249 |
# Filter models if specified
|
| 1250 |
selected_models = config.get('selected_models')
|
| 1251 |
if selected_models and len(selected_models) < len(trainer.models):
|
|
@@ -1258,10 +1464,19 @@ def main():
|
|
| 1258 |
logger.info(f"Applied custom configuration with {trainer.cv_folds} CV folds")
|
| 1259 |
if trainer.use_enhanced_features:
|
| 1260 |
logger.info("Enhanced features enabled via configuration")
|
|
|
|
|
|
|
| 1261 |
|
| 1262 |
except Exception as e:
|
| 1263 |
logger.warning(f"Failed to load configuration: {e}, using defaults")
|
| 1264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1265 |
success, message = trainer.train_model(data_path=args.data_path)
|
| 1266 |
|
| 1267 |
if success:
|
|
@@ -1277,6 +1492,23 @@ def main():
|
|
| 1277 |
print(f" {feature_type}: {count}")
|
| 1278 |
except Exception as e:
|
| 1279 |
logger.warning(f"Could not display feature summary: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1280 |
else:
|
| 1281 |
print(f"❌ {message}")
|
| 1282 |
exit(1)
|
|
|
|
| 1 |
+
# Enhanced model/train.py with LightGBM ensemble integration
|
| 2 |
|
| 3 |
import seaborn as sns
|
| 4 |
import matplotlib.pyplot as plt
|
|
|
|
| 14 |
train_test_split, cross_val_score, GridSearchCV,
|
| 15 |
StratifiedKFold, validation_curve, cross_validate
|
| 16 |
)
|
| 17 |
+
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
|
| 18 |
from sklearn.linear_model import LogisticRegression
|
| 19 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 20 |
import pandas as pd
|
|
|
|
| 31 |
from typing import Dict, Tuple, Optional, Any, List
|
| 32 |
import warnings
|
| 33 |
import re
|
| 34 |
+
|
| 35 |
+
# LightGBM import
|
| 36 |
+
try:
|
| 37 |
+
import lightgbm as lgb
|
| 38 |
+
LIGHTGBM_AVAILABLE = True
|
| 39 |
+
logging.info("LightGBM available for ensemble training")
|
| 40 |
+
except ImportError:
|
| 41 |
+
LIGHTGBM_AVAILABLE = False
|
| 42 |
+
logging.warning("LightGBM not available - ensemble training will use alternative algorithms")
|
| 43 |
+
|
| 44 |
warnings.filterwarnings('ignore')
|
| 45 |
|
| 46 |
# Import enhanced feature engineering components
|
|
|
|
| 70 |
logger = logging.getLogger(__name__)
|
| 71 |
|
| 72 |
|
| 73 |
+
class EnsembleModelTrainer:
|
| 74 |
+
"""Production-ready ensemble model trainer with LightGBM integration"""
|
| 75 |
+
|
| 76 |
+
def __init__(self, use_enhanced_features: bool = None, use_ensemble: bool = True):
|
| 77 |
+
# Auto-detect enhanced features if not specified
|
| 78 |
+
if use_enhanced_features is None:
|
| 79 |
+
self.use_enhanced_features = ENHANCED_FEATURES_AVAILABLE
|
| 80 |
+
else:
|
| 81 |
+
self.use_enhanced_features = use_enhanced_features and ENHANCED_FEATURES_AVAILABLE
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
self.use_ensemble = use_ensemble and LIGHTGBM_AVAILABLE
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
self.setup_paths()
|
| 86 |
+
self.setup_training_config()
|
| 87 |
+
self.setup_models()
|
| 88 |
+
self.progress_tracker = None
|
| 89 |
+
self.cv_manager = CrossValidationManager()
|
| 90 |
|
| 91 |
+
# Enhanced feature tracking
|
| 92 |
+
self.feature_engineer = None
|
| 93 |
+
self.feature_importance_results = {}
|
| 94 |
|
| 95 |
+
logger.info(f"Ensemble trainer initialized - Enhanced features: {self.use_enhanced_features}, "
|
| 96 |
+
f"LightGBM ensemble: {self.use_ensemble}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
def setup_paths(self):
|
| 99 |
+
"""Setup all necessary paths with proper permissions"""
|
| 100 |
+
self.base_dir = Path("/tmp")
|
| 101 |
+
self.data_dir = self.base_dir / "data"
|
| 102 |
+
self.model_dir = self.base_dir / "model"
|
| 103 |
+
self.results_dir = self.base_dir / "results"
|
| 104 |
+
self.features_dir = self.base_dir / "features"
|
| 105 |
|
| 106 |
+
# Create directories with proper permissions
|
| 107 |
+
for dir_path in [self.data_dir, self.model_dir, self.results_dir, self.features_dir]:
|
| 108 |
+
dir_path.mkdir(parents=True, exist_ok=True)
|
| 109 |
+
try:
|
| 110 |
+
dir_path.chmod(0o755)
|
| 111 |
+
except:
|
| 112 |
+
pass
|
| 113 |
+
|
| 114 |
+
# File paths
|
| 115 |
+
self.data_path = self.data_dir / "combined_dataset.csv"
|
| 116 |
+
self.model_path = Path("/tmp/model.pkl")
|
| 117 |
+
self.vectorizer_path = Path("/tmp/vectorizer.pkl")
|
| 118 |
+
self.pipeline_path = Path("/tmp/pipeline.pkl")
|
| 119 |
+
self.metadata_path = Path("/tmp/metadata.json")
|
| 120 |
+
self.evaluation_path = self.results_dir / "evaluation_results.json"
|
| 121 |
|
| 122 |
+
# Enhanced feature paths
|
| 123 |
+
self.feature_engineer_path = Path("/tmp/feature_engineer.pkl")
|
| 124 |
+
self.feature_importance_path = self.results_dir / "feature_importance.json"
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
# Ensemble-specific paths
|
| 127 |
+
self.ensemble_path = Path("/tmp/ensemble.pkl")
|
| 128 |
+
self.ensemble_metadata_path = Path("/tmp/ensemble_metadata.json")
|
| 129 |
+
|
| 130 |
+
def setup_training_config(self):
|
| 131 |
+
"""Setup training configuration with ensemble parameters"""
|
| 132 |
+
self.test_size = 0.2
|
| 133 |
+
self.validation_size = 0.1
|
| 134 |
+
self.random_state = 42
|
| 135 |
+
self.cv_folds = 5
|
| 136 |
|
| 137 |
+
# Enhanced feature configuration
|
| 138 |
+
if self.use_enhanced_features:
|
| 139 |
+
self.max_features = 7500
|
| 140 |
+
self.feature_selection_k = 3000
|
| 141 |
+
logger.info("Using enhanced feature engineering pipeline")
|
|
|
|
| 142 |
else:
|
| 143 |
+
self.max_features = 5000
|
| 144 |
+
self.feature_selection_k = 2000
|
| 145 |
+
logger.info("Using standard TF-IDF feature pipeline")
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
# Common parameters
|
| 148 |
+
self.min_df = 1
|
| 149 |
+
self.max_df = 0.95
|
| 150 |
+
self.ngram_range = (1, 2)
|
| 151 |
+
self.max_iter = 500
|
| 152 |
+
self.class_weight = 'balanced'
|
|
|
|
|
|
|
| 153 |
|
| 154 |
+
# LightGBM specific parameters
|
| 155 |
+
self.lgb_params = {
|
| 156 |
+
'objective': 'binary',
|
| 157 |
+
'metric': 'binary_logloss',
|
| 158 |
+
'boosting_type': 'gbdt',
|
| 159 |
+
'num_leaves': 31,
|
| 160 |
+
'learning_rate': 0.1,
|
| 161 |
+
'feature_fraction': 0.8,
|
| 162 |
+
'bagging_fraction': 0.8,
|
| 163 |
+
'bagging_freq': 5,
|
| 164 |
+
'verbose': -1,
|
| 165 |
+
'random_state': self.random_state,
|
| 166 |
+
'class_weight': 'balanced'
|
| 167 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
def setup_models(self):
|
| 170 |
+
"""Setup model configurations including LightGBM ensemble"""
|
| 171 |
+
# Base models
|
| 172 |
+
self.models = {
|
| 173 |
+
'logistic_regression': {
|
| 174 |
+
'model': LogisticRegression(
|
| 175 |
+
max_iter=self.max_iter,
|
| 176 |
+
class_weight=self.class_weight,
|
| 177 |
+
random_state=self.random_state,
|
| 178 |
+
n_jobs=-1
|
| 179 |
+
),
|
| 180 |
+
'param_grid': {
|
| 181 |
+
'model__C': [0.1, 1, 10],
|
| 182 |
+
'model__penalty': ['l2']
|
| 183 |
+
}
|
| 184 |
+
},
|
| 185 |
+
'random_forest': {
|
| 186 |
+
'model': RandomForestClassifier(
|
| 187 |
+
n_estimators=50,
|
| 188 |
+
class_weight=self.class_weight,
|
| 189 |
+
random_state=self.random_state,
|
| 190 |
+
n_jobs=-1
|
| 191 |
+
),
|
| 192 |
+
'param_grid': {
|
| 193 |
+
'model__n_estimators': [50, 100],
|
| 194 |
+
'model__max_depth': [10, None]
|
| 195 |
+
}
|
| 196 |
+
}
|
| 197 |
+
}
|
| 198 |
|
| 199 |
+
# Add LightGBM if available
|
| 200 |
+
if LIGHTGBM_AVAILABLE and self.use_ensemble:
|
| 201 |
+
self.models['lightgbm'] = {
|
| 202 |
+
'model': lgb.LGBMClassifier(
|
| 203 |
+
**self.lgb_params,
|
| 204 |
+
n_estimators=100
|
| 205 |
+
),
|
| 206 |
+
'param_grid': {
|
| 207 |
+
'model__n_estimators': [50, 100],
|
| 208 |
+
'model__learning_rate': [0.05, 0.1],
|
| 209 |
+
'model__num_leaves': [31, 63]
|
| 210 |
+
}
|
| 211 |
+
}
|
| 212 |
+
|
| 213 |
+
def create_lightgbm_ensemble(self, models_dict: Dict, X_train, y_train) -> VotingClassifier:
|
| 214 |
+
"""Create ensemble with LightGBM and traditional models"""
|
| 215 |
+
if not LIGHTGBM_AVAILABLE:
|
| 216 |
+
logger.warning("LightGBM not available for ensemble creation")
|
| 217 |
+
return None
|
| 218 |
|
| 219 |
+
logger.info("Creating LightGBM ensemble model...")
|
|
|
|
|
|
|
| 220 |
|
| 221 |
+
# Prepare estimators for voting classifier
|
| 222 |
+
estimators = []
|
| 223 |
|
| 224 |
+
for model_name, model_info in models_dict.items():
|
| 225 |
+
if 'best_estimator' in model_info:
|
| 226 |
+
model = model_info['best_estimator']
|
| 227 |
+
# Extract the actual model from pipeline
|
| 228 |
+
if hasattr(model, 'named_steps') and 'model' in model.named_steps:
|
| 229 |
+
actual_model = model.named_steps['model']
|
| 230 |
+
else:
|
| 231 |
+
actual_model = model
|
| 232 |
+
|
| 233 |
+
estimators.append((model_name, actual_model))
|
| 234 |
|
| 235 |
+
if len(estimators) < 2:
|
| 236 |
+
logger.warning("Not enough models for ensemble creation")
|
| 237 |
+
return None
|
| 238 |
|
| 239 |
+
# Create ensemble with soft voting for probability-based predictions
|
| 240 |
+
ensemble = VotingClassifier(
|
| 241 |
+
estimators=estimators,
|
| 242 |
+
voting='soft'
|
| 243 |
)
|
|
|
|
|
|
|
|
|
|
| 244 |
|
| 245 |
+
logger.info(f"Ensemble created with {len(estimators)} models: {[name for name, _ in estimators]}")
|
| 246 |
+
return ensemble
|
| 247 |
+
|
| 248 |
+
def train_ensemble_model(self, X_train, X_test, y_train, y_test, individual_results: Dict) -> Dict:
|
| 249 |
+
"""Train and evaluate ensemble model"""
|
| 250 |
+
if not self.use_ensemble or not LIGHTGBM_AVAILABLE:
|
| 251 |
+
logger.info("Ensemble training skipped - using best individual model")
|
| 252 |
+
return {}
|
| 253 |
|
| 254 |
+
logger.info("Training ensemble model with LightGBM integration...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
try:
|
| 257 |
+
# Create ensemble from individual models
|
| 258 |
+
ensemble = self.create_lightgbm_ensemble(individual_results, X_train, y_train)
|
| 259 |
+
|
| 260 |
+
if ensemble is None:
|
| 261 |
+
return {'error': 'Failed to create ensemble'}
|
| 262 |
+
|
| 263 |
+
# Train ensemble (models are already trained, just fitting the voting mechanism)
|
| 264 |
+
logger.info("Training ensemble voting mechanism...")
|
| 265 |
+
|
| 266 |
+
# For voting classifier with already-fitted models, we need to fit on features
|
| 267 |
+
# First, we need to prepare features the same way
|
| 268 |
+
pipeline = self.create_preprocessing_pipeline()
|
| 269 |
+
X_train_processed = pipeline.fit_transform(X_train, y_train)
|
| 270 |
+
X_test_processed = pipeline.transform(X_test)
|
| 271 |
+
|
| 272 |
+
# Fit the ensemble
|
| 273 |
+
ensemble.fit(X_train_processed, y_train)
|
| 274 |
+
|
| 275 |
+
# Evaluate ensemble
|
| 276 |
+
ensemble_metrics = self.comprehensive_evaluation_ensemble(
|
| 277 |
+
ensemble, X_test_processed, y_test, X_train_processed, y_train
|
| 278 |
)
|
| 279 |
|
| 280 |
+
# Create ensemble pipeline for consistency
|
| 281 |
+
ensemble_pipeline = Pipeline([
|
| 282 |
+
('preprocessing', pipeline.steps[0][1]), # Use same preprocessing
|
| 283 |
+
('ensemble', ensemble)
|
| 284 |
+
])
|
| 285 |
+
|
| 286 |
+
ensemble_results = {
|
| 287 |
+
'ensemble': ensemble_pipeline,
|
| 288 |
+
'evaluation_metrics': ensemble_metrics,
|
| 289 |
+
'component_models': list(individual_results.keys()),
|
| 290 |
+
'ensemble_type': 'voting_classifier_with_lightgbm' if 'lightgbm' in individual_results else 'voting_classifier',
|
| 291 |
+
'training_time': datetime.now().isoformat(),
|
| 292 |
+
'feature_type': 'enhanced' if self.use_enhanced_features else 'standard'
|
| 293 |
}
|
| 294 |
|
| 295 |
+
logger.info(f"Ensemble training completed - F1: {ensemble_metrics.get('f1', 'N/A'):.4f}")
|
| 296 |
+
return ensemble_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
+
except Exception as e:
|
| 299 |
+
logger.error(f"Ensemble training failed: {str(e)}")
|
| 300 |
+
return {'error': str(e)}
|
| 301 |
+
|
| 302 |
+
def comprehensive_evaluation_ensemble(self, model, X_test, y_test, X_train=None, y_train=None) -> Dict:
|
| 303 |
+
"""Comprehensive evaluation specifically for ensemble models"""
|
| 304 |
+
|
| 305 |
+
logger.info("Evaluating ensemble model...")
|
| 306 |
+
|
| 307 |
+
# Predictions
|
| 308 |
+
y_pred = model.predict(X_test)
|
| 309 |
+
y_pred_proba = model.predict_proba(X_test)[:, 1]
|
| 310 |
+
|
| 311 |
+
# Basic metrics
|
| 312 |
+
metrics = {
|
| 313 |
+
'accuracy': float(accuracy_score(y_test, y_pred)),
|
| 314 |
+
'precision': float(precision_score(y_test, y_pred, average='weighted')),
|
| 315 |
+
'recall': float(recall_score(y_test, y_pred, average='weighted')),
|
| 316 |
+
'f1': float(f1_score(y_test, y_pred, average='weighted')),
|
| 317 |
+
'roc_auc': float(roc_auc_score(y_test, y_pred_proba))
|
| 318 |
+
}
|
| 319 |
+
|
| 320 |
+
# Confusion matrix
|
| 321 |
+
cm = confusion_matrix(y_test, y_pred)
|
| 322 |
+
metrics['confusion_matrix'] = cm.tolist()
|
| 323 |
+
|
| 324 |
+
# Cross-validation on full dataset
|
| 325 |
+
if X_train is not None and y_train is not None:
|
| 326 |
+
X_full = np.concatenate([X_train, X_test])
|
| 327 |
+
y_full = np.concatenate([y_train, y_test])
|
| 328 |
|
| 329 |
+
logger.info("Performing cross-validation on ensemble...")
|
| 330 |
+
cv_results = self.cv_manager.perform_cross_validation(model, X_full, y_full)
|
| 331 |
+
metrics['cross_validation'] = cv_results
|
|
|
|
|
|
|
| 332 |
|
| 333 |
+
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
| 334 |
+
cv_f1_mean = cv_results['test_scores']['f1']['mean']
|
| 335 |
+
cv_f1_std = cv_results['test_scores']['f1']['std']
|
| 336 |
+
logger.info(f"Ensemble CV F1 Score: {cv_f1_mean:.4f} (±{cv_f1_std:.4f})")
|
| 337 |
+
|
| 338 |
+
# Ensemble-specific metrics
|
| 339 |
+
metrics['ensemble_info'] = {
|
| 340 |
+
'model_type': 'ensemble',
|
| 341 |
+
'voting_type': getattr(model, 'voting', 'unknown'),
|
| 342 |
+
'n_estimators': len(getattr(model, 'estimators_', [])),
|
| 343 |
+
'estimator_names': [name for name, _ in getattr(model, 'estimators', [])]
|
| 344 |
+
}
|
| 345 |
+
|
| 346 |
+
return metrics
|
| 347 |
+
|
| 348 |
+
def select_best_model(self, results: Dict, ensemble_results: Dict = None) -> Tuple[str, Any, Dict]:
|
| 349 |
+
"""Select the best performing model including ensemble option"""
|
| 350 |
+
|
| 351 |
+
logger.info("Selecting best model from individual models and ensemble...")
|
| 352 |
+
|
| 353 |
+
best_model_name = None
|
| 354 |
+
best_model = None
|
| 355 |
+
best_score = -1
|
| 356 |
+
best_metrics = None
|
| 357 |
+
|
| 358 |
+
# Evaluate individual models
|
| 359 |
+
for model_name, result in results.items():
|
| 360 |
+
if 'error' in result:
|
| 361 |
+
continue
|
| 362 |
+
|
| 363 |
+
cv_results = result['evaluation_metrics'].get('cross_validation', {})
|
| 364 |
+
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
| 365 |
+
f1_score = cv_results['test_scores']['f1']['mean']
|
| 366 |
+
score_type = "CV F1"
|
| 367 |
+
else:
|
| 368 |
+
f1_score = result['evaluation_metrics']['f1']
|
| 369 |
+
score_type = "Test F1"
|
| 370 |
+
|
| 371 |
+
logger.info(f"Model {model_name}: {score_type} = {f1_score:.4f}")
|
| 372 |
+
|
| 373 |
+
if f1_score > best_score:
|
| 374 |
+
best_score = f1_score
|
| 375 |
+
best_model_name = model_name
|
| 376 |
+
best_model = result['model']
|
| 377 |
+
best_metrics = result['evaluation_metrics']
|
| 378 |
+
|
| 379 |
+
# Evaluate ensemble if available
|
| 380 |
+
if ensemble_results and 'evaluation_metrics' in ensemble_results:
|
| 381 |
+
ensemble_metrics = ensemble_results['evaluation_metrics']
|
| 382 |
|
| 383 |
+
cv_results = ensemble_metrics.get('cross_validation', {})
|
| 384 |
+
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
| 385 |
+
ensemble_f1 = cv_results['test_scores']['f1']['mean']
|
| 386 |
+
score_type = "CV F1"
|
| 387 |
+
else:
|
| 388 |
+
ensemble_f1 = ensemble_metrics['f1']
|
| 389 |
+
score_type = "Test F1"
|
| 390 |
|
| 391 |
+
logger.info(f"Ensemble model: {score_type} = {ensemble_f1:.4f}")
|
| 392 |
+
|
| 393 |
+
if ensemble_f1 > best_score:
|
| 394 |
+
best_score = ensemble_f1
|
| 395 |
+
best_model_name = "ensemble"
|
| 396 |
+
best_model = ensemble_results['ensemble']
|
| 397 |
+
best_metrics = ensemble_metrics
|
| 398 |
+
|
| 399 |
+
if best_model_name is None:
|
| 400 |
+
raise ValueError("No models trained successfully")
|
| 401 |
+
|
| 402 |
+
logger.info(f"Best model selected: {best_model_name} with F1 score: {best_score:.4f}")
|
| 403 |
+
return best_model_name, best_model, best_metrics
|
| 404 |
+
|
| 405 |
+
def save_model_artifacts(self, model, model_name: str, metrics: Dict, results: Dict,
|
| 406 |
+
ensemble_results: Dict = None) -> bool:
|
| 407 |
+
"""Enhanced model artifacts saving with ensemble support"""
|
| 408 |
+
try:
|
| 409 |
+
logger.info(f"Saving model artifacts for {model_name}...")
|
| 410 |
+
|
| 411 |
+
# Save the main pipeline/model
|
| 412 |
+
if model_name == "ensemble":
|
| 413 |
+
# Save ensemble model
|
| 414 |
+
joblib.dump(model, self.ensemble_path)
|
| 415 |
+
logger.info(f"Saved ensemble model to {self.ensemble_path}")
|
| 416 |
+
|
| 417 |
+
# Also save as main pipeline for API compatibility
|
| 418 |
+
joblib.dump(model, self.pipeline_path)
|
| 419 |
+
logger.info(f"Saved ensemble as main pipeline to {self.pipeline_path}")
|
| 420 |
+
|
| 421 |
+
# Save ensemble metadata
|
| 422 |
+
ensemble_metadata = {
|
| 423 |
+
'model_type': 'ensemble',
|
| 424 |
+
'ensemble_type': ensemble_results.get('ensemble_type', 'voting_classifier'),
|
| 425 |
+
'component_models': ensemble_results.get('component_models', []),
|
| 426 |
+
'ensemble_info': metrics.get('ensemble_info', {}),
|
| 427 |
+
'timestamp': datetime.now().isoformat()
|
| 428 |
+
}
|
| 429 |
+
|
| 430 |
+
with open(self.ensemble_metadata_path, 'w') as f:
|
| 431 |
+
json.dump(ensemble_metadata, f, indent=2)
|
| 432 |
+
logger.info(f"Saved ensemble metadata to {self.ensemble_metadata_path}")
|
| 433 |
+
|
| 434 |
+
else:
|
| 435 |
+
# Save individual model pipeline
|
| 436 |
+
joblib.dump(model, self.pipeline_path)
|
| 437 |
+
logger.info(f"Saved {model_name} pipeline to {self.pipeline_path}")
|
| 438 |
+
|
| 439 |
+
# Save individual components for backward compatibility
|
| 440 |
+
try:
|
| 441 |
+
if hasattr(model, 'named_steps'):
|
| 442 |
+
if 'model' in model.named_steps:
|
| 443 |
+
joblib.dump(model.named_steps['model'], self.model_path)
|
| 444 |
+
elif 'ensemble' in model.named_steps:
|
| 445 |
+
joblib.dump(model.named_steps['ensemble'], self.model_path)
|
| 446 |
+
|
| 447 |
+
# Save vectorizer or enhanced features reference
|
| 448 |
+
if 'vectorize' in model.named_steps:
|
| 449 |
+
joblib.dump(model.named_steps['vectorize'], self.vectorizer_path)
|
| 450 |
+
elif 'enhanced_features' in model.named_steps:
|
| 451 |
+
enhanced_ref = {
|
| 452 |
+
'type': 'enhanced_features',
|
| 453 |
+
'feature_engineer_path': str(self.feature_engineer_path),
|
| 454 |
+
'metadata': self.feature_engineer.get_feature_metadata() if self.feature_engineer else {}
|
| 455 |
+
}
|
| 456 |
+
joblib.dump(enhanced_ref, self.vectorizer_path)
|
| 457 |
+
|
| 458 |
+
except Exception as e:
|
| 459 |
+
logger.warning(f"Could not save individual components: {e}")
|
| 460 |
+
|
| 461 |
+
# Generate enhanced metadata
|
| 462 |
+
metadata = self._create_enhanced_metadata(model_name, metrics, results, ensemble_results)
|
| 463 |
|
| 464 |
+
# Save metadata
|
| 465 |
+
with open(self.metadata_path, 'w') as f:
|
| 466 |
+
json.dump(metadata, f, indent=2)
|
| 467 |
+
logger.info(f"Saved metadata to {self.metadata_path}")
|
| 468 |
+
|
| 469 |
+
return True
|
| 470 |
+
|
| 471 |
except Exception as e:
|
| 472 |
+
logger.error(f"Failed to save model artifacts: {str(e)}")
|
| 473 |
+
return False
|
| 474 |
+
|
| 475 |
+
def _create_enhanced_metadata(self, model_name: str, metrics: Dict, results: Dict,
|
| 476 |
+
ensemble_results: Dict = None) -> Dict:
|
| 477 |
+
"""Create comprehensive metadata including ensemble information"""
|
| 478 |
+
|
| 479 |
+
# Generate data hash and version
|
| 480 |
+
data_hash = hashlib.md5(str(datetime.now()).encode()).hexdigest()
|
| 481 |
+
version_suffix = "ensemble" if model_name == "ensemble" else model_name
|
| 482 |
+
|
| 483 |
+
metadata = {
|
| 484 |
+
'model_version': f"v2.0_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{version_suffix}",
|
| 485 |
+
'model_type': model_name,
|
| 486 |
+
'is_ensemble': model_name == "ensemble",
|
| 487 |
+
'data_version': data_hash,
|
| 488 |
+
'test_accuracy': metrics['accuracy'],
|
| 489 |
+
'test_f1': metrics['f1'],
|
| 490 |
+
'test_precision': metrics['precision'],
|
| 491 |
+
'test_recall': metrics['recall'],
|
| 492 |
+
'test_roc_auc': metrics['roc_auc'],
|
| 493 |
+
'timestamp': datetime.now().isoformat(),
|
| 494 |
+
'training_method': 'enhanced_ensemble_training' if self.use_ensemble else 'enhanced_individual_training',
|
| 495 |
+
'lightgbm_available': LIGHTGBM_AVAILABLE,
|
| 496 |
+
'lightgbm_used': self.use_ensemble and LIGHTGBM_AVAILABLE
|
| 497 |
+
}
|
| 498 |
+
|
| 499 |
+
# Add feature engineering information
|
| 500 |
+
metadata['feature_engineering'] = {
|
| 501 |
+
'type': 'enhanced' if self.use_enhanced_features else 'standard',
|
| 502 |
+
'enhanced_features_available': ENHANCED_FEATURES_AVAILABLE,
|
| 503 |
+
'enhanced_features_used': self.use_enhanced_features
|
| 504 |
+
}
|
| 505 |
+
|
| 506 |
+
# Add ensemble-specific metadata
|
| 507 |
+
if model_name == "ensemble" and ensemble_results:
|
| 508 |
+
metadata['ensemble_details'] = {
|
| 509 |
+
'ensemble_type': ensemble_results.get('ensemble_type', 'voting_classifier'),
|
| 510 |
+
'component_models': ensemble_results.get('component_models', []),
|
| 511 |
+
'ensemble_info': metrics.get('ensemble_info', {}),
|
| 512 |
+
'voting_type': metrics.get('ensemble_info', {}).get('voting_type', 'soft')
|
| 513 |
}
|
| 514 |
+
|
| 515 |
+
# Add individual model performances for comparison
|
| 516 |
+
metadata['component_performance'] = {}
|
| 517 |
+
for comp_model_name in ensemble_results.get('component_models', []):
|
| 518 |
+
if comp_model_name in results and 'evaluation_metrics' in results[comp_model_name]:
|
| 519 |
+
comp_metrics = results[comp_model_name]['evaluation_metrics']
|
| 520 |
+
metadata['component_performance'][comp_model_name] = {
|
| 521 |
+
'f1': comp_metrics.get('f1', 0),
|
| 522 |
+
'accuracy': comp_metrics.get('accuracy', 0)
|
| 523 |
+
}
|
| 524 |
+
|
| 525 |
+
# Add CV results
|
| 526 |
+
cv_results = metrics.get('cross_validation', {})
|
| 527 |
+
if cv_results and 'test_scores' in cv_results:
|
| 528 |
+
metadata['cross_validation'] = {
|
| 529 |
+
'n_splits': cv_results.get('n_splits', self.cv_folds),
|
| 530 |
+
'test_scores': cv_results['test_scores'],
|
| 531 |
+
'train_scores': cv_results.get('train_scores', {}),
|
| 532 |
+
'overfitting_score': cv_results.get('overfitting_score', 'Unknown'),
|
| 533 |
+
'stability_score': cv_results.get('stability_score', 'Unknown')
|
| 534 |
+
}
|
| 535 |
+
|
| 536 |
+
if 'f1' in cv_results['test_scores']:
|
| 537 |
+
metadata.update({
|
| 538 |
+
'cv_f1_mean': cv_results['test_scores']['f1']['mean'],
|
| 539 |
+
'cv_f1_std': cv_results['test_scores']['f1']['std']
|
| 540 |
+
})
|
| 541 |
+
|
| 542 |
+
# Add training configuration
|
| 543 |
+
metadata['training_config'] = {
|
| 544 |
+
'test_size': self.test_size,
|
| 545 |
+
'cv_folds': self.cv_folds,
|
| 546 |
+
'max_features': self.max_features,
|
| 547 |
+
'use_ensemble': self.use_ensemble,
|
| 548 |
+
'use_enhanced_features': self.use_enhanced_features
|
| 549 |
+
}
|
| 550 |
|
| 551 |
+
return metadata
|
| 552 |
+
|
| 553 |
+
def train_model(self, data_path: str = None, force_enhanced: bool = None,
|
| 554 |
+
use_ensemble: bool = None) -> Tuple[bool, str]:
|
| 555 |
+
"""Main training function with ensemble support"""
|
| 556 |
try:
|
| 557 |
+
# Override settings if specified
|
| 558 |
+
if force_enhanced is not None:
|
| 559 |
+
original_enhanced = self.use_enhanced_features
|
| 560 |
+
self.use_enhanced_features = force_enhanced and ENHANCED_FEATURES_AVAILABLE
|
| 561 |
+
|
| 562 |
+
if use_ensemble is not None:
|
| 563 |
+
self.use_ensemble = use_ensemble and LIGHTGBM_AVAILABLE
|
| 564 |
+
|
| 565 |
+
feature_type = "enhanced" if self.use_enhanced_features else "standard"
|
| 566 |
+
training_type = "ensemble" if self.use_ensemble else "individual"
|
| 567 |
|
| 568 |
+
logger.info(f"Starting {feature_type} {training_type} model training...")
|
| 569 |
+
|
| 570 |
+
# Override data path if provided
|
| 571 |
+
if data_path:
|
| 572 |
+
self.data_path = Path(data_path)
|
| 573 |
+
|
| 574 |
+
# Load and validate data
|
| 575 |
+
success, df, message = self.load_and_validate_data()
|
| 576 |
+
if not success:
|
| 577 |
+
return False, message
|
| 578 |
+
|
| 579 |
+
# Estimate training time
|
| 580 |
+
time_estimate = estimate_training_time(
|
| 581 |
+
len(df),
|
| 582 |
+
enable_tuning=True,
|
| 583 |
+
cv_folds=self.cv_folds,
|
| 584 |
+
use_enhanced_features=self.use_enhanced_features,
|
| 585 |
+
use_ensemble=self.use_ensemble
|
| 586 |
+
)
|
| 587 |
|
| 588 |
+
model_count = len(self.models)
|
| 589 |
+
logger.info(f"Training Configuration:")
|
| 590 |
+
logger.info(f" Dataset size: {len(df)} samples")
|
| 591 |
+
logger.info(f" Feature engineering: {feature_type.title()}")
|
| 592 |
+
logger.info(f" Training approach: {training_type.title()}")
|
| 593 |
+
logger.info(f" Models to train: {model_count}")
|
| 594 |
+
logger.info(f" LightGBM available: {LIGHTGBM_AVAILABLE}")
|
| 595 |
+
logger.info(f" Estimated time: {time_estimate['total_formatted']}")
|
| 596 |
+
|
| 597 |
+
# Setup progress tracker
|
| 598 |
+
base_steps = 4 + (model_count * 3) + 2 # Base + model training + ensemble
|
| 599 |
+
enhanced_steps = 2 if self.use_enhanced_features else 0
|
| 600 |
+
ensemble_steps = 3 if self.use_ensemble else 0
|
| 601 |
+
total_steps = base_steps + enhanced_steps + ensemble_steps
|
| 602 |
|
| 603 |
+
self.progress_tracker = ProgressTracker(
|
| 604 |
+
total_steps,
|
| 605 |
+
f"{feature_type.title()} {training_type.title()} Training"
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
# Prepare data
|
| 609 |
+
X = df['text'].values
|
| 610 |
+
y = df['label'].values
|
| 611 |
+
|
| 612 |
+
# Train-test split
|
| 613 |
+
self.progress_tracker.update("Splitting data")
|
|
|
|
|
|
|
|
|
|
| 614 |
|
| 615 |
+
if len(X) < 10:
|
| 616 |
+
test_size = max(0.1, 1/len(X))
|
| 617 |
+
else:
|
| 618 |
+
test_size = self.test_size
|
| 619 |
+
|
| 620 |
+
label_counts = pd.Series(y).value_counts()
|
| 621 |
+
min_class_count = label_counts.min()
|
| 622 |
+
can_stratify = min_class_count >= 2 and len(y) >= 4
|
| 623 |
|
| 624 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 625 |
+
X, y,
|
| 626 |
+
test_size=test_size,
|
| 627 |
+
stratify=y if can_stratify else None,
|
| 628 |
+
random_state=self.random_state
|
| 629 |
+
)
|
| 630 |
|
| 631 |
+
logger.info(f"Data split: {len(X_train)} train, {len(X_test)} test")
|
| 632 |
|
| 633 |
+
# Train individual models
|
| 634 |
+
results = self.train_and_evaluate_models(X_train, X_test, y_train, y_test)
|
| 635 |
+
|
| 636 |
+
# Train ensemble if enabled
|
| 637 |
+
ensemble_results = {}
|
| 638 |
+
if self.use_ensemble and len([r for r in results.values() if 'error' not in r]) >= 2:
|
| 639 |
+
self.progress_tracker.update("Creating ensemble model")
|
| 640 |
+
ensemble_results = self.train_ensemble_model(X_train, X_test, y_train, y_test, results)
|
| 641 |
+
|
| 642 |
+
if ensemble_results and 'error' not in ensemble_results:
|
| 643 |
+
logger.info("Ensemble model trained successfully")
|
| 644 |
+
else:
|
| 645 |
+
logger.warning("Ensemble training failed, using best individual model")
|
| 646 |
|
| 647 |
+
# Select best model (individual or ensemble)
|
| 648 |
+
best_model_name, best_model, best_metrics = self.select_best_model(results, ensemble_results)
|
| 649 |
+
|
| 650 |
+
# Save model artifacts
|
| 651 |
+
if not self.save_model_artifacts(best_model, best_model_name, best_metrics, results, ensemble_results):
|
| 652 |
+
return False, "Failed to save model artifacts"
|
| 653 |
+
|
| 654 |
+
# Finish progress tracking
|
| 655 |
+
self.progress_tracker.finish()
|
| 656 |
+
|
| 657 |
+
# Create success message
|
| 658 |
+
cv_results = best_metrics.get('cross_validation', {})
|
| 659 |
+
cv_info = ""
|
| 660 |
+
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
| 661 |
+
cv_f1_mean = cv_results['test_scores']['f1']['mean']
|
| 662 |
+
cv_f1_std = cv_results['test_scores']['f1']['std']
|
| 663 |
+
cv_info = f", CV F1: {cv_f1_mean:.4f} (±{cv_f1_std:.4f})"
|
| 664 |
+
|
| 665 |
+
# Enhanced features info
|
| 666 |
+
feature_info = f", {feature_type.title()} Features"
|
| 667 |
+
if self.use_enhanced_features:
|
| 668 |
+
feature_metadata = best_metrics.get('feature_metadata', {})
|
| 669 |
+
if feature_metadata:
|
| 670 |
+
total_features = feature_metadata.get('total_features', 0)
|
| 671 |
+
feature_info = f", Enhanced Features: {total_features}"
|
| 672 |
|
| 673 |
+
# Ensemble info
|
| 674 |
+
ensemble_info = ""
|
| 675 |
+
if best_model_name == "ensemble":
|
| 676 |
+
ensemble_details = best_metrics.get('ensemble_info', {})
|
| 677 |
+
n_models = ensemble_details.get('n_estimators', 0)
|
| 678 |
+
ensemble_info = f", Ensemble: {n_models} models"
|
|
|
|
| 679 |
|
| 680 |
+
success_message = (
|
| 681 |
+
f"{training_type.title()} model training completed successfully. "
|
| 682 |
+
f"Best model: {best_model_name} "
|
| 683 |
+
f"(Test F1: {best_metrics['f1']:.4f}, Test Accuracy: {best_metrics['accuracy']:.4f}{cv_info}{feature_info}{ensemble_info})"
|
| 684 |
+
)
|
|
|
|
|
|
|
|
|
|
| 685 |
|
| 686 |
+
logger.info(success_message)
|
| 687 |
+
return True, success_message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 688 |
|
| 689 |
+
except Exception as e:
|
| 690 |
+
if self.progress_tracker:
|
| 691 |
+
print()
|
| 692 |
+
error_message = f"Enhanced ensemble model training failed: {str(e)}"
|
| 693 |
+
logger.error(error_message)
|
| 694 |
+
return False, error_message
|
| 695 |
+
|
| 696 |
+
# Include all other methods from the original trainer (load_and_validate_data,
|
| 697 |
+
# create_preprocessing_pipeline, comprehensive_evaluation, train_and_evaluate_models, etc.)
|
| 698 |
+
# These remain largely the same but with minor modifications for ensemble support
|
| 699 |
+
|
| 700 |
+
|
| 701 |
+
def estimate_training_time(dataset_size: int, enable_tuning: bool = True, cv_folds: int = 5,
|
| 702 |
+
use_enhanced_features: bool = False, use_ensemble: bool = False) -> Dict:
|
| 703 |
+
"""Enhanced time estimation including ensemble training"""
|
| 704 |
+
|
| 705 |
+
# Base time estimates (in seconds)
|
| 706 |
+
base_times = {
|
| 707 |
+
'preprocessing': max(0.1, dataset_size * 0.001),
|
| 708 |
+
'vectorization': max(0.5, dataset_size * 0.01),
|
| 709 |
+
'feature_selection': max(0.2, dataset_size * 0.005),
|
| 710 |
+
'simple_training': max(1.0, dataset_size * 0.02),
|
| 711 |
+
'evaluation': max(0.5, dataset_size * 0.01),
|
| 712 |
+
}
|
| 713 |
+
|
| 714 |
+
# Enhanced feature engineering time multipliers
|
| 715 |
+
if use_enhanced_features:
|
| 716 |
+
base_times['preprocessing'] *= 2.5
|
| 717 |
+
base_times['vectorization'] *= 1.5
|
| 718 |
+
base_times['feature_selection'] *= 2.0
|
| 719 |
+
base_times['enhanced_feature_extraction'] = max(2.0, dataset_size * 0.05)
|
| 720 |
+
|
| 721 |
+
# LightGBM training time (typically faster than RF but slower than LogReg)
|
| 722 |
+
if use_ensemble and LIGHTGBM_AVAILABLE:
|
| 723 |
+
base_times['lightgbm_training'] = max(2.0, dataset_size * 0.03)
|
| 724 |
+
base_times['ensemble_creation'] = max(1.0, dataset_size * 0.005)
|
| 725 |
+
base_times['ensemble_evaluation'] = max(1.0, dataset_size * 0.015)
|
| 726 |
+
|
| 727 |
+
# Hyperparameter tuning multipliers
|
| 728 |
+
tuning_multipliers = {
|
| 729 |
+
'logistic_regression': 8 if enable_tuning else 1,
|
| 730 |
+
'random_forest': 12 if enable_tuning else 1,
|
| 731 |
+
}
|
| 732 |
+
|
| 733 |
+
if use_ensemble and LIGHTGBM_AVAILABLE:
|
| 734 |
+
tuning_multipliers['lightgbm'] = 10 if enable_tuning else 1
|
| 735 |
+
|
| 736 |
+
# Cross-validation multiplier
|
| 737 |
+
cv_multiplier = cv_folds if dataset_size > 100 else 1
|
| 738 |
+
|
| 739 |
+
# Calculate estimates
|
| 740 |
+
estimates = {}
|
| 741 |
+
|
| 742 |
+
# Preprocessing steps
|
| 743 |
+
estimates['data_loading'] = 0.5
|
| 744 |
+
estimates['preprocessing'] = base_times['preprocessing']
|
| 745 |
+
estimates['vectorization'] = base_times['vectorization']
|
| 746 |
+
|
| 747 |
+
if use_enhanced_features:
|
| 748 |
+
estimates['enhanced_feature_extraction'] = base_times['enhanced_feature_extraction']
|
| 749 |
+
|
| 750 |
+
estimates['feature_selection'] = base_times['feature_selection']
|
| 751 |
+
|
| 752 |
+
# Model training (includes CV)
|
| 753 |
+
for model_name, multiplier in tuning_multipliers.items():
|
| 754 |
+
model_time = base_times['simple_training'] * multiplier * cv_multiplier
|
| 755 |
+
estimates[f'{model_name}_training'] = model_time
|
| 756 |
+
estimates[f'{model_name}_evaluation'] = base_times['evaluation']
|
| 757 |
+
|
| 758 |
+
# Ensemble-specific steps
|
| 759 |
+
if use_ensemble and LIGHTGBM_AVAILABLE:
|
| 760 |
+
estimates['ensemble_creation'] = base_times['ensemble_creation']
|
| 761 |
+
estimates['ensemble_evaluation'] = base_times['ensemble_evaluation']
|
| 762 |
+
estimates['ensemble_cross_validation'] = base_times['simple_training'] * cv_folds * 0.3
|
| 763 |
+
|
| 764 |
+
# Cross-validation overhead
|
| 765 |
+
estimates['cross_validation'] = base_times['simple_training'] * cv_folds * 0.5
|
| 766 |
+
|
| 767 |
+
# Model saving
|
| 768 |
+
estimates['model_saving'] = 1.0
|
| 769 |
+
|
| 770 |
+
# Total estimate
|
| 771 |
+
total_estimate = sum(estimates.values())
|
| 772 |
+
|
| 773 |
+
# Add buffer for overhead
|
| 774 |
+
buffer_multiplier = 1.6 if use_ensemble else (1.4 if use_enhanced_features else 1.2)
|
| 775 |
+
total_estimate *= buffer_multiplier
|
| 776 |
+
|
| 777 |
+
return {
|
| 778 |
+
'detailed_estimates': estimates,
|
| 779 |
+
'total_seconds': total_estimate,
|
| 780 |
+
'total_formatted': str(timedelta(seconds=int(total_estimate))),
|
| 781 |
+
'dataset_size': dataset_size,
|
| 782 |
+
'enable_tuning': enable_tuning,
|
| 783 |
+
'cv_folds': cv_folds,
|
| 784 |
+
'use_enhanced_features': use_enhanced_features,
|
| 785 |
+
'use_ensemble': use_ensemble,
|
| 786 |
+
'lightgbm_available': LIGHTGBM_AVAILABLE
|
| 787 |
+
}
|
| 788 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 789 |
|
| 790 |
+
# Import all remaining methods from original trainer class
|
| 791 |
+
class EnhancedModelTrainer(EnsembleModelTrainer):
|
| 792 |
+
"""Complete enhanced model trainer inheriting from ensemble trainer"""
|
| 793 |
+
|
| 794 |
def load_and_validate_data(self) -> Tuple[bool, Optional[pd.DataFrame], str]:
|
| 795 |
"""Load and validate training data"""
|
| 796 |
try:
|
|
|
|
| 1142 |
|
| 1143 |
return results
|
| 1144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1145 |
|
| 1146 |
+
# Continue with ProgressTracker and CrossValidationManager classes from original...
|
| 1147 |
+
class ProgressTracker:
|
| 1148 |
+
"""Progress tracking with time estimation"""
|
| 1149 |
+
|
| 1150 |
+
def __init__(self, total_steps: int, description: str = "Training"):
|
| 1151 |
+
self.total_steps = total_steps
|
| 1152 |
+
self.current_step = 0
|
| 1153 |
+
self.start_time = time.time()
|
| 1154 |
+
self.description = description
|
| 1155 |
+
self.step_times = []
|
| 1156 |
+
|
| 1157 |
+
def update(self, step_name: str = ""):
|
| 1158 |
+
"""Update progress and print status"""
|
| 1159 |
+
self.current_step += 1
|
| 1160 |
+
current_time = time.time()
|
| 1161 |
+
elapsed = current_time - self.start_time
|
| 1162 |
+
|
| 1163 |
+
# Calculate progress percentage
|
| 1164 |
+
progress_pct = (self.current_step / self.total_steps) * 100
|
| 1165 |
+
|
| 1166 |
+
# Estimate remaining time
|
| 1167 |
+
if self.current_step > 0:
|
| 1168 |
+
avg_time_per_step = elapsed / self.current_step
|
| 1169 |
+
remaining_steps = self.total_steps - self.current_step
|
| 1170 |
+
eta_seconds = avg_time_per_step * remaining_steps
|
| 1171 |
+
eta = timedelta(seconds=int(eta_seconds))
|
| 1172 |
+
else:
|
| 1173 |
+
eta = "calculating..."
|
| 1174 |
+
|
| 1175 |
+
# Create progress bar
|
| 1176 |
+
bar_length = 30
|
| 1177 |
+
filled_length = int(bar_length * self.current_step // self.total_steps)
|
| 1178 |
+
bar = '█' * filled_length + '░' * (bar_length - filled_length)
|
| 1179 |
+
|
| 1180 |
+
# Print progress (this will be visible in Streamlit logs)
|
| 1181 |
+
status_msg = f"\r{self.description}: [{bar}] {progress_pct:.1f}% | Step {self.current_step}/{self.total_steps}"
|
| 1182 |
+
if step_name:
|
| 1183 |
+
status_msg += f" | {step_name}"
|
| 1184 |
+
if eta != "calculating...":
|
| 1185 |
+
status_msg += f" | ETA: {eta}"
|
| 1186 |
+
|
| 1187 |
+
print(status_msg, end='', flush=True)
|
| 1188 |
+
|
| 1189 |
+
# Also output JSON for Streamlit parsing (if needed)
|
| 1190 |
+
progress_json = {
|
| 1191 |
+
"type": "progress",
|
| 1192 |
+
"step": self.current_step,
|
| 1193 |
+
"total": self.total_steps,
|
| 1194 |
+
"percentage": progress_pct,
|
| 1195 |
+
"eta": str(eta) if eta != "calculating..." else None,
|
| 1196 |
+
"step_name": step_name,
|
| 1197 |
+
"elapsed": elapsed
|
| 1198 |
+
}
|
| 1199 |
+
print(f"\nPROGRESS_JSON: {json.dumps(progress_json)}")
|
| 1200 |
+
|
| 1201 |
+
# Store step time for better estimation
|
| 1202 |
+
if len(self.step_times) >= 3:
|
| 1203 |
+
self.step_times.pop(0)
|
| 1204 |
+
self.step_times.append(current_time - (self.start_time + sum(self.step_times)))
|
| 1205 |
+
|
| 1206 |
+
def finish(self):
|
| 1207 |
+
"""Complete progress tracking"""
|
| 1208 |
+
total_time = time.time() - self.start_time
|
| 1209 |
+
print(f"\n{self.description} completed in {timedelta(seconds=int(total_time))}")
|
| 1210 |
|
|
|
|
|
|
|
| 1211 |
|
| 1212 |
+
class CrossValidationManager:
|
| 1213 |
+
"""Advanced cross-validation management with comprehensive metrics"""
|
| 1214 |
+
|
| 1215 |
+
def __init__(self, cv_folds: int = 5, random_state: int = 42):
|
| 1216 |
+
self.cv_folds = cv_folds
|
| 1217 |
+
self.random_state = random_state
|
| 1218 |
+
self.cv_results = {}
|
| 1219 |
+
|
| 1220 |
+
def create_cv_strategy(self, X, y) -> StratifiedKFold:
|
| 1221 |
+
"""Create appropriate CV strategy based on data characteristics"""
|
| 1222 |
+
# Calculate appropriate CV folds for small datasets
|
| 1223 |
+
n_samples = len(X)
|
| 1224 |
+
min_samples_per_fold = 3 # Minimum samples per fold
|
| 1225 |
+
max_folds = n_samples // min_samples_per_fold
|
| 1226 |
+
|
| 1227 |
+
# Adjust folds based on data size and class distribution
|
| 1228 |
+
unique_classes = np.unique(y)
|
| 1229 |
+
min_class_count = min([np.sum(y == cls) for cls in unique_classes])
|
| 1230 |
+
|
| 1231 |
+
# Ensure each fold has at least one sample from each class
|
| 1232 |
+
max_folds_by_class = min_class_count
|
| 1233 |
+
|
| 1234 |
+
actual_folds = max(2, min(self.cv_folds, max_folds, max_folds_by_class))
|
| 1235 |
+
|
| 1236 |
+
logger.info(f"Using {actual_folds} CV folds (requested: {self.cv_folds})")
|
| 1237 |
+
|
| 1238 |
+
return StratifiedKFold(
|
| 1239 |
+
n_splits=actual_folds,
|
| 1240 |
+
shuffle=True,
|
| 1241 |
+
random_state=self.random_state
|
| 1242 |
+
)
|
| 1243 |
+
|
| 1244 |
+
def perform_cross_validation(self, pipeline, X, y, cv_strategy=None) -> Dict:
|
| 1245 |
+
"""Perform comprehensive cross-validation with multiple metrics"""
|
| 1246 |
+
|
| 1247 |
+
if cv_strategy is None:
|
| 1248 |
+
cv_strategy = self.create_cv_strategy(X, y)
|
| 1249 |
+
|
| 1250 |
+
logger.info(f"Starting cross-validation with {cv_strategy.n_splits} folds...")
|
| 1251 |
+
|
| 1252 |
+
# Define scoring metrics
|
| 1253 |
+
scoring_metrics = {
|
| 1254 |
+
'accuracy': 'accuracy',
|
| 1255 |
+
'precision': 'precision_weighted',
|
| 1256 |
+
'recall': 'recall_weighted',
|
| 1257 |
+
'f1': 'f1_weighted',
|
| 1258 |
+
'roc_auc': 'roc_auc'
|
| 1259 |
+
}
|
| 1260 |
+
|
| 1261 |
try:
|
| 1262 |
+
# Perform cross-validation
|
| 1263 |
+
cv_scores = cross_validate(
|
| 1264 |
+
pipeline, X, y,
|
| 1265 |
+
cv=cv_strategy,
|
| 1266 |
+
scoring=scoring_metrics,
|
| 1267 |
+
return_train_score=True,
|
| 1268 |
+
n_jobs=1, # Use single job for stability
|
| 1269 |
+
verbose=0
|
| 1270 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1271 |
|
| 1272 |
+
# Process results
|
| 1273 |
+
cv_results = {
|
| 1274 |
+
'n_splits': cv_strategy.n_splits,
|
| 1275 |
+
'test_scores': {},
|
| 1276 |
+
'train_scores': {},
|
| 1277 |
+
'fold_results': []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1278 |
}
|
| 1279 |
|
| 1280 |
+
# Calculate statistics for each metric
|
| 1281 |
+
for metric_name in scoring_metrics.keys():
|
| 1282 |
+
test_key = f'test_{metric_name}'
|
| 1283 |
+
train_key = f'train_{metric_name}'
|
| 1284 |
+
|
| 1285 |
+
if test_key in cv_scores:
|
| 1286 |
+
test_scores = cv_scores[test_key]
|
| 1287 |
+
cv_results['test_scores'][metric_name] = {
|
| 1288 |
+
'mean': float(np.mean(test_scores)),
|
| 1289 |
+
'std': float(np.std(test_scores)),
|
| 1290 |
+
'min': float(np.min(test_scores)),
|
| 1291 |
+
'max': float(np.max(test_scores)),
|
| 1292 |
+
'scores': test_scores.tolist()
|
| 1293 |
}
|
| 1294 |
|
| 1295 |
+
if train_key in cv_scores:
|
| 1296 |
+
train_scores = cv_scores[train_key]
|
| 1297 |
+
cv_results['train_scores'][metric_name] = {
|
| 1298 |
+
'mean': float(np.mean(train_scores)),
|
| 1299 |
+
'std': float(np.std(train_scores)),
|
| 1300 |
+
'min': float(np.min(train_scores)),
|
| 1301 |
+
'max': float(np.max(train_scores)),
|
| 1302 |
+
'scores': train_scores.tolist()
|
| 1303 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1304 |
|
| 1305 |
+
# Store individual fold results
|
| 1306 |
+
for fold_idx in range(cv_strategy.n_splits):
|
| 1307 |
+
fold_result = {
|
| 1308 |
+
'fold': fold_idx + 1,
|
| 1309 |
+
'test_scores': {},
|
| 1310 |
+
'train_scores': {}
|
|
|
|
|
|
|
|
|
|
| 1311 |
}
|
| 1312 |
|
| 1313 |
+
for metric_name in scoring_metrics.keys():
|
| 1314 |
+
test_key = f'test_{metric_name}'
|
| 1315 |
+
train_key = f'train_{metric_name}'
|
| 1316 |
+
|
| 1317 |
+
if test_key in cv_scores:
|
| 1318 |
+
fold_result['test_scores'][metric_name] = float(cv_scores[test_key][fold_idx])
|
| 1319 |
+
if train_key in cv_scores:
|
| 1320 |
+
fold_result['train_scores'][metric_name] = float(cv_scores[train_key][fold_idx])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1321 |
|
| 1322 |
+
cv_results['fold_results'].append(fold_result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1323 |
|
| 1324 |
+
# Calculate overfitting indicators
|
| 1325 |
+
if 'accuracy' in cv_results['test_scores'] and 'accuracy' in cv_results['train_scores']:
|
| 1326 |
+
train_mean = cv_results['train_scores']['accuracy']['mean']
|
| 1327 |
+
test_mean = cv_results['test_scores']['accuracy']['mean']
|
| 1328 |
+
cv_results['overfitting_score'] = float(train_mean - test_mean)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1329 |
|
| 1330 |
+
# Calculate stability metrics
|
| 1331 |
+
if 'accuracy' in cv_results['test_scores']:
|
| 1332 |
+
test_std = cv_results['test_scores']['accuracy']['std']
|
| 1333 |
+
test_mean = cv_results['test_scores']['accuracy']['mean']
|
| 1334 |
+
cv_results['stability_score'] = float(1 - (test_std / test_mean)) if test_mean > 0 else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1335 |
|
| 1336 |
+
logger.info(f"Cross-validation completed successfully")
|
| 1337 |
+
logger.info(f"Mean test accuracy: {cv_results['test_scores'].get('accuracy', {}).get('mean', 'N/A'):.4f}")
|
| 1338 |
+
logger.info(f"Mean test F1: {cv_results['test_scores'].get('f1', {}).get('mean', 'N/A'):.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1339 |
|
| 1340 |
+
return cv_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1341 |
|
| 1342 |
+
except Exception as e:
|
| 1343 |
+
logger.error(f"Cross-validation failed: {e}")
|
| 1344 |
+
return {
|
| 1345 |
+
'error': str(e),
|
| 1346 |
+
'n_splits': cv_strategy.n_splits if cv_strategy else self.cv_folds,
|
| 1347 |
+
'fallback': True
|
| 1348 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1349 |
|
|
|
|
|
|
|
| 1350 |
|
| 1351 |
+
def preprocess_text_function(texts):
|
| 1352 |
+
"""
|
| 1353 |
+
Standalone function for text preprocessing - pickle-safe
|
| 1354 |
+
"""
|
| 1355 |
+
def clean_single_text(text):
|
| 1356 |
+
# Convert to string
|
| 1357 |
+
text = str(text)
|
| 1358 |
+
|
| 1359 |
+
# Remove URLs
|
| 1360 |
+
text = re.sub(r'http\S+|www\S+|https\S+', '', text)
|
| 1361 |
+
|
| 1362 |
+
# Remove email addresses
|
| 1363 |
+
text = re.sub(r'\S+@\S+', '', text)
|
| 1364 |
+
|
| 1365 |
+
# Remove excessive punctuation
|
| 1366 |
+
text = re.sub(r'[!]{2,}', '!', text)
|
| 1367 |
+
text = re.sub(r'[?]{2,}', '?', text)
|
| 1368 |
+
text = re.sub(r'[.]{3,}', '...', text)
|
| 1369 |
+
|
| 1370 |
+
# Remove non-alphabetic characters except spaces and basic punctuation
|
| 1371 |
+
text = re.sub(r'[^a-zA-Z\s.!?]', '', text)
|
| 1372 |
+
|
| 1373 |
+
# Remove excessive whitespace
|
| 1374 |
+
text = re.sub(r'\s+', ' ', text)
|
| 1375 |
+
|
| 1376 |
+
return text.strip().lower()
|
| 1377 |
+
|
| 1378 |
+
# Process all texts
|
| 1379 |
+
processed = []
|
| 1380 |
+
for text in texts:
|
| 1381 |
+
processed.append(clean_single_text(text))
|
| 1382 |
+
|
| 1383 |
+
return processed
|
| 1384 |
|
| 1385 |
|
| 1386 |
def main():
|
| 1387 |
+
"""Main execution function with enhanced ensemble support"""
|
| 1388 |
import argparse
|
| 1389 |
|
| 1390 |
# Parse command line arguments
|
| 1391 |
+
parser = argparse.ArgumentParser(description='Train fake news detection model with LightGBM ensemble')
|
| 1392 |
parser.add_argument('--data_path', type=str, help='Path to training data CSV file')
|
| 1393 |
parser.add_argument('--config_path', type=str, help='Path to training configuration JSON file')
|
| 1394 |
parser.add_argument('--cv_folds', type=int, default=5, help='Number of cross-validation folds')
|
| 1395 |
parser.add_argument('--enhanced_features', action='store_true', help='Force use of enhanced features')
|
| 1396 |
parser.add_argument('--standard_features', action='store_true', help='Force use of standard TF-IDF features only')
|
| 1397 |
+
parser.add_argument('--ensemble', action='store_true', help='Force use of LightGBM ensemble')
|
| 1398 |
+
parser.add_argument('--no_ensemble', action='store_true', help='Disable ensemble training')
|
| 1399 |
args = parser.parse_args()
|
| 1400 |
|
| 1401 |
# Determine feature engineering mode
|
|
|
|
| 1409 |
use_enhanced = False
|
| 1410 |
logger.info("Standard features explicitly requested")
|
| 1411 |
|
| 1412 |
+
# Determine ensemble mode
|
| 1413 |
+
use_ensemble = None
|
| 1414 |
+
if args.ensemble and args.no_ensemble:
|
| 1415 |
+
logger.warning("Both --ensemble and --no_ensemble specified. Using auto-detection.")
|
| 1416 |
+
elif args.ensemble:
|
| 1417 |
+
use_ensemble = True
|
| 1418 |
+
logger.info("LightGBM ensemble explicitly requested")
|
| 1419 |
+
elif args.no_ensemble:
|
| 1420 |
+
use_ensemble = False
|
| 1421 |
+
logger.info("Ensemble training explicitly disabled")
|
| 1422 |
+
|
| 1423 |
+
trainer = EnhancedModelTrainer(use_enhanced_features=use_enhanced, use_ensemble=use_ensemble)
|
| 1424 |
|
| 1425 |
# Apply CV folds from command line
|
| 1426 |
if args.cv_folds:
|
|
|
|
| 1444 |
if 'enhanced_features' in config and use_enhanced is None:
|
| 1445 |
trainer.use_enhanced_features = config['enhanced_features'] and ENHANCED_FEATURES_AVAILABLE
|
| 1446 |
|
| 1447 |
+
# Ensemble configuration
|
| 1448 |
+
if 'use_ensemble' in config and use_ensemble is None:
|
| 1449 |
+
trainer.use_ensemble = config['use_ensemble'] and LIGHTGBM_AVAILABLE
|
| 1450 |
+
|
| 1451 |
+
# LightGBM specific parameters
|
| 1452 |
+
if 'lightgbm_params' in config:
|
| 1453 |
+
trainer.lgb_params.update(config['lightgbm_params'])
|
| 1454 |
+
|
| 1455 |
# Filter models if specified
|
| 1456 |
selected_models = config.get('selected_models')
|
| 1457 |
if selected_models and len(selected_models) < len(trainer.models):
|
|
|
|
| 1464 |
logger.info(f"Applied custom configuration with {trainer.cv_folds} CV folds")
|
| 1465 |
if trainer.use_enhanced_features:
|
| 1466 |
logger.info("Enhanced features enabled via configuration")
|
| 1467 |
+
if trainer.use_ensemble:
|
| 1468 |
+
logger.info("LightGBM ensemble enabled via configuration")
|
| 1469 |
|
| 1470 |
except Exception as e:
|
| 1471 |
logger.warning(f"Failed to load configuration: {e}, using defaults")
|
| 1472 |
|
| 1473 |
+
# Log final configuration
|
| 1474 |
+
logger.info("Final Training Configuration:")
|
| 1475 |
+
logger.info(f" Enhanced Features: {trainer.use_enhanced_features} (Available: {ENHANCED_FEATURES_AVAILABLE})")
|
| 1476 |
+
logger.info(f" LightGBM Ensemble: {trainer.use_ensemble} (Available: {LIGHTGBM_AVAILABLE})")
|
| 1477 |
+
logger.info(f" Models to train: {list(trainer.models.keys())}")
|
| 1478 |
+
logger.info(f" Cross-validation folds: {trainer.cv_folds}")
|
| 1479 |
+
|
| 1480 |
success, message = trainer.train_model(data_path=args.data_path)
|
| 1481 |
|
| 1482 |
if success:
|
|
|
|
| 1492 |
print(f" {feature_type}: {count}")
|
| 1493 |
except Exception as e:
|
| 1494 |
logger.warning(f"Could not display feature summary: {e}")
|
| 1495 |
+
|
| 1496 |
+
# Print ensemble summary
|
| 1497 |
+
if trainer.use_ensemble and LIGHTGBM_AVAILABLE:
|
| 1498 |
+
try:
|
| 1499 |
+
ensemble_metadata_path = Path("/tmp/ensemble_metadata.json")
|
| 1500 |
+
if ensemble_metadata_path.exists():
|
| 1501 |
+
with open(ensemble_metadata_path, 'r') as f:
|
| 1502 |
+
ensemble_metadata = json.load(f)
|
| 1503 |
+
|
| 1504 |
+
print(f"\n🎯 Ensemble Model Summary:")
|
| 1505 |
+
print(f"Ensemble type: {ensemble_metadata.get('ensemble_type', 'unknown')}")
|
| 1506 |
+
print(f"Component models: {', '.join(ensemble_metadata.get('component_models', []))}")
|
| 1507 |
+
else:
|
| 1508 |
+
print(f"\n🎯 Individual Model Selected (Ensemble not used)")
|
| 1509 |
+
except Exception as e:
|
| 1510 |
+
logger.warning(f"Could not display ensemble summary: {e}")
|
| 1511 |
+
|
| 1512 |
else:
|
| 1513 |
print(f"❌ {message}")
|
| 1514 |
exit(1)
|