|
import gradio as gr |
|
import pandas as pd |
|
import lightgbm as lgb |
|
import numpy as np |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.preprocessing import LabelEncoder |
|
import os |
|
import torch |
|
from torchvision import models, transforms |
|
from PIL import Image |
|
|
|
|
|
|
|
|
|
|
|
url = "https://raw.githubusercontent.com/Pushpinder-Singh06/CSV-Files/refs/heads/main/crop_cleaned%20data.csv " |
|
data = pd.read_csv(url) |
|
|
|
X = data.drop('label', axis=1) |
|
y = data['label'] |
|
le = LabelEncoder() |
|
y_encoded = le.fit_transform(y) |
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.3, random_state=0) |
|
model = lgb.LGBMClassifier() |
|
model.fit(X_train, y_train) |
|
|
|
def predict_crop(nitrogen, phosphorus, potassium, temperature, humidity, soil_pH, rainfall): |
|
input_data = np.array([[nitrogen, phosphorus, potassium, temperature, humidity, soil_pH, rainfall]]) |
|
pred = model.predict(input_data)[0] |
|
crop_name = le.inverse_transform([pred])[0] |
|
image_path = f"crop_images/{crop_name}.jpeg" |
|
if not os.path.exists(image_path): |
|
image_path = None |
|
return image_path, f"🌾 Recommended crop for your field: *{crop_name}*" |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# 🌾 **Which Crop Should I Grow?**") |
|
|
|
with gr.Tabs(): |
|
with gr.Row(): |
|
nitrogen = gr.Slider(0, 140, step=1, label="Nitrogen (kg/ha)") |
|
phosphorus = gr.Slider(5, 95, step=1, label="Phosphorus (kg/ha)") |
|
potassium = gr.Slider(5, 82, step=1, label="Potassium (kg/ha)") |
|
with gr.Row(): |
|
temperature = gr.Slider(15.63, 36.32, step=0.1, label="Temperature (°C)") |
|
humidity = gr.Slider(14.2, 99.98, step=1, label="Humidity (%)") |
|
with gr.Row(): |
|
soil_pH = gr.Slider(0, 14, step=0.1, label="Soil pH") |
|
rainfall = gr.Slider(20.21, 253.72, step=1, label="Rainfall (mm)") |
|
|
|
predict_btn = gr.Button("Predict Crop") |
|
crop_image_output = gr.Image(label="🌿 Crop Image") |
|
crop_text_output = gr.Markdown() |
|
|
|
predict_btn.click(fn=predict_crop, |
|
inputs=[nitrogen, phosphorus, potassium, temperature, humidity, soil_pH, rainfall], |
|
outputs=[crop_image_output, crop_text_output]) |
|
|
|
demo.launch() |
|
|