Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ from PIL import Image
|
|
13 |
# ---------------------------
|
14 |
# Crop Recommendation Setup
|
15 |
# ---------------------------
|
16 |
-
url = "https://raw.githubusercontent.com/
|
17 |
data = pd.read_csv(url)
|
18 |
|
19 |
X = data.drop('label', axis=1)
|
@@ -25,33 +25,36 @@ X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.3,
|
|
25 |
model = lgb.LGBMClassifier()
|
26 |
model.fit(X_train, y_train)
|
27 |
|
28 |
-
def predict_crop(
|
29 |
-
input_data = np.array([[
|
30 |
pred = model.predict(input_data)[0]
|
31 |
crop_name = le.inverse_transform([pred])[0]
|
32 |
image_path = f"crop_images/{crop_name}.jpeg"
|
33 |
if not os.path.exists(image_path):
|
34 |
image_path = None
|
35 |
-
return image_path, f"
|
36 |
|
37 |
with gr.Blocks() as demo:
|
38 |
-
gr.Markdown("# 🌾
|
39 |
|
40 |
with gr.Tabs():
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
13 |
# ---------------------------
|
14 |
# Crop Recommendation Setup
|
15 |
# ---------------------------
|
16 |
+
url = "https://raw.githubusercontent.com/Pushpinder-Singh06/CSV-Files/refs/heads/main/crop_cleaned%20data.csv "
|
17 |
data = pd.read_csv(url)
|
18 |
|
19 |
X = data.drop('label', axis=1)
|
|
|
25 |
model = lgb.LGBMClassifier()
|
26 |
model.fit(X_train, y_train)
|
27 |
|
28 |
+
def predict_crop(nitrogen, phosphorus, potassium, temperature, humidity, soil_pH, rainfall):
|
29 |
+
input_data = np.array([[nitrogen, phosphorus, potassium, temperature, humidity, soil_pH, rainfall]])
|
30 |
pred = model.predict(input_data)[0]
|
31 |
crop_name = le.inverse_transform([pred])[0]
|
32 |
image_path = f"crop_images/{crop_name}.jpeg"
|
33 |
if not os.path.exists(image_path):
|
34 |
image_path = None
|
35 |
+
return image_path, f"🌾 Recommended crop for your field: *{crop_name}*"
|
36 |
|
37 |
with gr.Blocks() as demo:
|
38 |
+
gr.Markdown("# 🌾 **Which Crop Should I Grow?**")
|
39 |
|
40 |
with gr.Tabs():
|
41 |
+
with gr.Row():
|
42 |
+
nitrogen = gr.Slider(0, 140, step=1, label="Nitrogen (kg/ha)")
|
43 |
+
phosphorus = gr.Slider(5, 95, step=1, label="Phosphorus (kg/ha)")
|
44 |
+
potassium = gr.Slider(5, 82, step=1, label="Potassium (kg/ha)")
|
45 |
+
with gr.Row():
|
46 |
+
temperature = gr.Slider(15.63, 36.32, step=0.1, label="Temperature (°C)")
|
47 |
+
humidity = gr.Slider(14.2, 99.98, step=1, label="Humidity (%)")
|
48 |
+
with gr.Row():
|
49 |
+
soil_pH = gr.Slider(0, 14, step=0.1, label="Soil pH")
|
50 |
+
rainfall = gr.Slider(20.21, 253.72, step=1, label="Rainfall (mm)")
|
51 |
+
|
52 |
+
predict_btn = gr.Button("Predict Crop")
|
53 |
+
crop_image_output = gr.Image(label="🌿 Crop Image")
|
54 |
+
crop_text_output = gr.Markdown()
|
55 |
+
|
56 |
+
predict_btn.click(fn=predict_crop,
|
57 |
+
inputs=[nitrogen, phosphorus, potassium, temperature, humidity, soil_pH, rainfall],
|
58 |
+
outputs=[crop_image_output, crop_text_output])
|
59 |
+
|
60 |
+
demo.launch()
|