Update app.py
Browse files
app.py
CHANGED
|
@@ -13,7 +13,7 @@ from PIL import Image
|
|
| 13 |
# ---------------------------
|
| 14 |
# Crop Recommendation Setup
|
| 15 |
# ---------------------------
|
| 16 |
-
url = "https://raw.githubusercontent.com/
|
| 17 |
data = pd.read_csv(url)
|
| 18 |
|
| 19 |
X = data.drop('label', axis=1)
|
|
@@ -25,33 +25,36 @@ X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.3,
|
|
| 25 |
model = lgb.LGBMClassifier()
|
| 26 |
model.fit(X_train, y_train)
|
| 27 |
|
| 28 |
-
def predict_crop(
|
| 29 |
-
input_data = np.array([[
|
| 30 |
pred = model.predict(input_data)[0]
|
| 31 |
crop_name = le.inverse_transform([pred])[0]
|
| 32 |
image_path = f"crop_images/{crop_name}.jpeg"
|
| 33 |
if not os.path.exists(image_path):
|
| 34 |
image_path = None
|
| 35 |
-
return image_path, f"
|
| 36 |
|
| 37 |
with gr.Blocks() as demo:
|
| 38 |
-
gr.Markdown("# 🌾
|
| 39 |
|
| 40 |
with gr.Tabs():
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
# ---------------------------
|
| 14 |
# Crop Recommendation Setup
|
| 15 |
# ---------------------------
|
| 16 |
+
url = "https://raw.githubusercontent.com/Pushpinder-Singh06/CSV-Files/refs/heads/main/crop_cleaned%20data.csv "
|
| 17 |
data = pd.read_csv(url)
|
| 18 |
|
| 19 |
X = data.drop('label', axis=1)
|
|
|
|
| 25 |
model = lgb.LGBMClassifier()
|
| 26 |
model.fit(X_train, y_train)
|
| 27 |
|
| 28 |
+
def predict_crop(nitrogen, phosphorus, potassium, temperature, humidity, soil_pH, rainfall):
|
| 29 |
+
input_data = np.array([[nitrogen, phosphorus, potassium, temperature, humidity, soil_pH, rainfall]])
|
| 30 |
pred = model.predict(input_data)[0]
|
| 31 |
crop_name = le.inverse_transform([pred])[0]
|
| 32 |
image_path = f"crop_images/{crop_name}.jpeg"
|
| 33 |
if not os.path.exists(image_path):
|
| 34 |
image_path = None
|
| 35 |
+
return image_path, f"🌾 Recommended crop for your field: *{crop_name}*"
|
| 36 |
|
| 37 |
with gr.Blocks() as demo:
|
| 38 |
+
gr.Markdown("# 🌾 **Which Crop Should I Grow?**")
|
| 39 |
|
| 40 |
with gr.Tabs():
|
| 41 |
+
with gr.Row():
|
| 42 |
+
nitrogen = gr.Slider(0, 140, step=1, label="Nitrogen (kg/ha)")
|
| 43 |
+
phosphorus = gr.Slider(5, 95, step=1, label="Phosphorus (kg/ha)")
|
| 44 |
+
potassium = gr.Slider(5, 82, step=1, label="Potassium (kg/ha)")
|
| 45 |
+
with gr.Row():
|
| 46 |
+
temperature = gr.Slider(15.63, 36.32, step=0.1, label="Temperature (°C)")
|
| 47 |
+
humidity = gr.Slider(14.2, 99.98, step=1, label="Humidity (%)")
|
| 48 |
+
with gr.Row():
|
| 49 |
+
soil_pH = gr.Slider(0, 14, step=0.1, label="Soil pH")
|
| 50 |
+
rainfall = gr.Slider(20.21, 253.72, step=1, label="Rainfall (mm)")
|
| 51 |
+
|
| 52 |
+
predict_btn = gr.Button("Predict Crop")
|
| 53 |
+
crop_image_output = gr.Image(label="🌿 Crop Image")
|
| 54 |
+
crop_text_output = gr.Markdown()
|
| 55 |
+
|
| 56 |
+
predict_btn.click(fn=predict_crop,
|
| 57 |
+
inputs=[nitrogen, phosphorus, potassium, temperature, humidity, soil_pH, rainfall],
|
| 58 |
+
outputs=[crop_image_output, crop_text_output])
|
| 59 |
+
|
| 60 |
+
demo.launch()
|